The Center for Business and Economic Research (CBER) is the applied economic research branch of the Carol Martin Gatton College of Business and Economics at the University of Kentucky. Its purpose is to disseminate economic information and provide economic and policy analysis to assist decision makers in Kentucky’s public and private sectors. CBER performs research projects for federal, state, and local government agencies, as well as for private-sector clients nationwide. The primary motivation behind CBER’s research agenda is the belief that systematic and scientific inquiries into economic phenomena yield knowledge which is indispensable to the formulation of informed public policy. Recent projects have been conducted on manpower, labor, and human resources; tourism economics; transportation economics; health economics; regulatory reform; public finance; technology use and adoption; education policy; and economic development.

The initial Annual Economic Report was released in 1972 by the Council of Economic Advisors. This five-member council was established by an executive order signed by Governor Wendell Ford in December 1970. The Council was codified by state statute in 1972, with the responsibility to “monitor the economic progress of the Commonwealth and to advise the Office of the Governor on policies and programs for achieving the Commonwealth’s full potential for economic growth.” The Office of Business Development and Government Services, College of Business and Economics, University of Kentucky, acted as the secretariat, publishing various economic reports, including this Annual Report. In 1984, the Center for Business and Economic Research assumed responsibility as the secretariat for publishing the Annual Report for the Kentucky Council of Economic Advisors. In 1986, KRS 164.738 was passed, which directs CBER to maintain state economic data and produce the annual report. With passage of this statute in 1986, the Center for Business and Economic Research, under the auspices of the Department of Economics, has assumed responsibility for the mission originally set forth in 1970.
From the Director . . .

This report is one of the important ways that the Center for Business and Economic Research fulfills its mission to examine various aspects of Kentucky’s economy as directed by the Kentucky Revised Statutes (KRS 164.738). The analysis and data presented here cover a variety of topics that range from a discussion of Kentucky’s current economic climate to a broad presentation of factors affecting the economy.

The report covers numerous dimensions of Kentucky’s economy and COVID-19’s effects are evident across many of these dimensions. The pandemic brought the longest running economic expansion to an abrupt end. By April, Kentucky’s employment declined by 325,100 jobs compared to January. These job losses had wide ranging implications such as widening the racial employment gap; reducing families’ ability to pay for housing; increasing reliance on social programs; and reducing child-care options for working parents. As of October, the state had recovered 67 percent of jobs lost during the first months of the recession, but the recovery remains far from complete. Kentucky’s employment was still down 107,600 jobs, or 5.5 percent, from January.

As I write this, the level of uncertainty remains high. Rising cases of coronavirus are prompting public officials across the nation to consider reimposing social distancing restrictions. Congress is debating a second round of stimulus. Although additional stimulus seems likely, the timing and scope are unknown. While several vaccines appear to be on the horizon, it is still unclear when vaccinations will be widely available and how long it will take for consumer spending to recover.

We present a broad array of data on Kentucky that measure both economic inputs and outputs. We have organized the data into twelve thematic areas: Agriculture, Community, Economy, Economic Security, Education, Energy, Environment, Health, Infrastructure, Innovation, Population, and Public Finance. While representing a diverse array of sectors, a unifying set of themes embedded into these sections is that prosperity is increasingly tied to place and preparation. This report includes data for Kentucky over many years, which allows one to assess change over time. We have included data on the U.S. and the twelve states considered Kentucky’s main economic competitors—Alabama, Georgia, Illinois, Indiana, Mississippi, Missouri, North Carolina, Ohio, South Carolina, Tennessee, Virginia, and West Virginia. This allows the reader to assess Kentucky’s relative position over time across numerous measures of economic and social well-being.

Coronavirus was certainly the main economic story of 2020 and will continue to affect the economy for some time. However, Kentucky continues to face many of same challenges that existed prior to the pandemic including workforce development, labor force participation, and racial disparities. In many ways, the pandemic has magnified these challenges. We consistently note the importance of education to address these issues and shape Kentucky’s long-term economic and social well-being. This has never been truer. Investing in education and training increases productivity, raises wages, improves health, and reduces economic insecurity. Our goal with this report is to help inform policy, business, and community leaders as they consider how to address Kentucky’s challenges.
Contents

- Worked Remotely for Pay Due to COVID... 46
- Paid for Hours Not Worked Due to COVID... 47
- Hourly Wages... 48
- Job Growth.. 49
- Wage & Salary Growth by State... 50
- Wage & Salary Change During COVID.. 51
- Employment Growth by State.. 52
- Employment Change During COVID.. 53
- Wage & Salary Growth by Kentucky Region... 54
- Wage & Salary Change by Kentucky Region.. 55
- Employment Growth by Kentucky Region.. 56
- Employment Change by Kentucky Region... 57
- Per Capita Personal Income.. 58
- Household Income... 59
- Net Earnings Per Capita... 60
- Net Earnings Per Capita by County... 61
- Employment-Population Ratio.. 62
- Employment-Population Ratio (continued)... 63
- Labor Force Participation.. 64
- Labor Force Participation by County.. 65
- Employment by Foreign Companies... 66
- Exports.. 67
- Housing Starts.. 68
- Foreclosures.. 69
- Community Banks... 70
- Community Banks by Kentucky Region... 71
- Earnings Gap.. 72

Economic Security.. 73

- Distressed Community Index... 75
- Jobless Claims... 76
- Transfer Payments by County.. 77
- Gini Index by State.. 78
- Gini Index by County.. 79
- Household Income Growth.. 80
- Household Income Ratio... 81
- Hourly Wages... 82
Contents

Banking Status...83
Personal Bankruptcies...84
Business Bankruptcies...85
Housing in Kentucky...86
Renter Occupied Units..87
Housing Costs...88
Impact of COVID on Housing...89
Poverty Rate...90
Poverty Rate by County..91
Child Poverty..92
Elder Poverty..93
Food Insecurity..94
Food Stamp Participation..95
Food Insecurity and the Pandemic...96
Food Insecurity and the Pandemic (continued)..97
Temporary Assistance For Needy Families...98
Medicaid Beneficiaries...99
Supplemental Security Income (SSI)..100
Disability Income (DI)...101
Women, Infants, and Children (WIC)...102

Education..103
Wages and Education..105
Family Income by Education...106
Labor Force Participation by Education...107
Volunteer Rate by Education...108
Technology Use by Education...109
Health by Education...110
Public Assistance by Education...111
Education Index..112
Selected Educational Indicators...113
Selected Obstacles to Education...114
Educational Spending ROI...115
Public Pre-K Enrollment..116
Free and Reduced-Lunch Eligibility..117
Performance on Standardized Tests..118
Educational Achievement Gap...119
Contents

College Readiness...120
Advanced Placement Exam Mastery..121
High School Attainment...122
High School Graduation Rate...123
College Attainment...124
College Attainment by County...125
Associate’s Degrees...126
Science and Engineering Graduates....................................127
Bright Spot Schools...128
Bright Spot Schools (continued)...129

Energy...131
Renewable Energy Production..133
Energy Consumption by End-Use Sector.............................134
Energy Consumption by Source...135
Kentucky Coal Distribution...136
Natural Gas Supplanting Coal...137
Coal Production...138
Mining & Coal...139
Energy Consumption per GDP...140
Energy Efficiency...141
Industrial Electricity Costs...142
Residential Electricity Costs...143
Motor Gasoline Expenditures..144

Environment..145
Toxic Releases..147
Solid Waste..148
Recycling..149
Air Quality..150
Air Quality (continued)...151
Lead & Copper Rule Violations...152
Lead Risk..153

Health..155
Social Determinants of Health...157
COVID-19 Deaths..158
COVID-19 Cases..159
Contents

Health Security and Preparedness...160
Health Security and Preparedness (continued)..161
Drug Overdose Death Rate..162
Drug Overdoes Death Rate (continued)...163
Adult Smokers...164
Adult Obesity...165
Risk Behaviors and Chronic Disease..166
Number at Risk for Chronic Disease..167
Chronic Disease by County: Number..168
Chronic Disease by County: Percent...169
Chronic Disease Risk by Age Group...170
Foregone Medical Care Due to COVID..171
Oral Health...172
Disability..173
Health Insurance Coverage: Children..174
Health Insurance Coverage: Everyone..175
Youth Health-Related Behaviors...176
Youth Obesity...177
Youth Smoking & Vaping...178
Youth Alcohol and Drug Abuse...179

Infrastructure..181
Commuting...183
Road Condition...184
Narrow Roads..185
Bridges...186
Problem Bridges by County..187
Water Quality..188
Health-Based Violations...189
High-Speed Internet..190
High-Speed Internet by County...191
Dams...192
High-Hazard Potential Dams...193
Solid Waste Disposal..194

Innovation...195
Early-Stage Entrepreneurship...197
State Technology and Science Index..198
Contents

County-Level Innovation Index...199
Patents..200
Patents by County...201
Small Business Innovation Research...202
SBIR/STTR Awards by County...203
STEM Occupations by State...204
STEM Jobs..205
High-Technology Establishments...206
Venture Capital...207
Self-Employed...208
Entrepreneurial Depth..209
Nonemployer Establishments...210

Population...211
Population Totals..213
Rural Population..214
Population Change..215
Regional Population Change...216
County Population Changes...217
Minority Population..218
White, Non-Hispanic Population..219
Foreign-Born Population...220
Foreign-Born Population by County..221
Population by Age Group...222
Median Age..223

Public Finance...225
General Fund Receipts by Source..227
Growth Rates, Taxes and Income...228
General Fund Tax Receipts...229
Revenue from Federal Transfers..230
State and Local Own Source Revenue..231
State and Local Tax Revenue by Source..232
State and Local Expenditures...233
Education Expenditures...234
Education Expenditures in the U.S..235
Community Development Expenditures..236
Contents

Community Development Expenditures in the U.S.................................237
Social Services Expenditures...238
Social Services Expenditures in the U.S..239
Public Protection Expenditures..240
Public Protection Expenditures in the U.S..241
Infrastructure Expenditures...242
Infrastructure Expenditures in the U.S..243
Debt...244
Public Pension Funding Gaps..245
Pension Funded Ratio...246
Pension Funding...247
Notes & Sources...249
Glossary...265
At the end of 2019, the U.S. economy was adding to its longest expansion in history, and the main economic concerns related to slowing global growth and uncertainty over U.S. trade policy. These concerns were quickly overshadowed as the potential severity of COVID-19 and the steps needed to fight the pandemic became clearer.

By early 2020, the pandemic brought the longest running economic expansion to an abrupt end. The economic losses have been substantial. Kentucky and the nation experienced record losses in output and employment. By April, Kentucky’s employment declined by 325,100 jobs compared to January. These job losses had wide ranging implications such as widening the racial employment gap; reducing families’ ability to pay for housing; increasing reliance on social programs; and reducing child-care options for working parents. As of October, the state had recovered 67% of jobs lost during the first months of the recession, but the recovery remains far from complete. Kentucky’s employment was still down 107,600 jobs, or 5.5%, from January. Although the aggregate impact on Kentucky’s economy mirrors the national impact, several of Kentucky’s industries were hit harder. Unfortunately, there is still a great deal that is not known about how the pandemic has affected the nation and Kentucky.

We do know, however, that much of the burden imposed by the pandemic, including lives and jobs lost, has been unevenly distributed. Our county-level assessment of lives and jobs lost illustrates the combined effect of deaths attributed to COVID-19, as well as the economic hardship associated with jobs that have gone away in the past year. We find that 14.6% of metro counties nationally are in the bottom quartile—the hardest hit by loss—while slightly rural and mostly rural counties are disproportionately represented in the bottom quartile, 24.4% and 36.7%, respectively. In other words, over one-third of mostly rural counties are in the hardest hit group of counties, while less than 15% of metro counties are in the hardest hit quartile.

The COVID-19 pandemic has exacerbated the economic divide between urban and rural America that has been widening for the last three and a half decades. Numerous social, demographic, health, and economic trends paint a picture of widespread community distress across wide swaths of the country. These trends are especially intense in Kentucky, since about 41% of Kentucky’s population live in somewhat or mostly rural counties, compared to about 14% nationally.

While the fragility of rural communities reflects local trends and global forces that have been developing for several decades, the unfolding of their impact has intensified over the last decade—and there are indications that the pandemic could exacerbate some of these trends. The Distressed Communities Index (DCI), developed by the Economic Innovation Group, measures the vitality of communities by drawing from educational, housing, and employment factors. Their insights suggest that community distress is more common in rural areas, while urban areas tend to be more educated and prosperous.
Before the pandemic hit, total wages and salaries increased since the Great Recession by 48.6% in Kentucky’s Urban Triangle, the state’s primary economic engine, with the South Central region not far behind at 40.8%, and Western Kentucky at 32.1%. Eastern Kentucky trails far behind the rest of the state at 8.4%. Similarly, Kentucky’s Urban Triangle experienced a 12.9% increase in total employment, which exceeds the U.S. average of 11.1%. The other regions in the state grew more slowly, as evidenced by the 1% increase in Western Kentucky and 6.2% increase in South Central Kentucky. In Eastern Kentucky employment is over 10% lower—a significant decline that reflects the declining fortunes of the coal industry. However, all regions of the state were hit hard by the pandemic, and experienced double-digit declines in employment and wages during the first two quarters of 2020.

Place, however, is just one of the factors affecting *prosperity*, another is *preparation*. To be prepared, one must have education, training, or skills valued by the marketplace. Perhaps the most noteworthy economic trend over the last three and a half decades is the growing importance of education for economic success. Improving educational outcomes and enhancing the skills of Kentucky’s prime working-age adults would, no doubt, help to move the needle on the state’s labor force participation rate, which is one of the lowest in the country. This is especially true in rural areas where education levels and labor force participation rates are generally lower. While improving educational outcomes is necessary for increasing the labor force participation rate, it is not necessarily sufficient. For a variety of reasons, including, but not limited to, the changing global energy market, high chronic disease rates, and population loss, many regions around the state are languishing economically.

There are two primary factors that drive economic growth and enhance productivity—education and innovation. Kentucky has experienced progress in both areas. However, virtually every other state has progressed too, so Kentucky’s relative position has not changed a lot over the last several years. Kentucky has remained in the middle of the pack in our *Education Index*, and in the bottom quintile of the *State Technology and Science Index*. Since many communities across the state lack an advanced telecommunications infrastructure, another factor that would help level the economic playing field for rural communities is enhanced connectivity.

Coronavirus was certainly the main economic story of 2020 and will continue to affect the economy for some time. However, Kentucky continues to face many of same challenges that existed prior to the pandemic including workforce development, labor force participation, and racial disparities. In many ways, the pandemic has magnified these challenges. We consistently note the importance of education to address these issues and shape Kentucky’s long-term economic and social well-being. This has never been truer. Investing in education and training increases productivity, raises wages, improves health, and reduces economic insecurity.
The inspiration and framework for this report rests, of course, on the foundation constructed by prior CBER staff and the previous forty-eight Annual Reports they have produced. Moreover, we have melded their tradition of academic rigor with the intellectual breadth found in the biennial reports on trends affecting Kentucky’s future once produced by the staff of the Kentucky Long-Term Policy Research Center—Michal Smith-Mello, Billie Dunavent, Amy Watts (Burke), Mark Schirmer, Peter Schirmer, and Suzanne King.

Warren Nash, Executive Director of The Von Allmen Center for Entrepreneurship, also provided important support. This Center is the epicenter for entrepreneurship at the University of Kentucky. The Center brings together students, mentors, service providers, and regional entrepreneurs to promote the creation of new businesses in the Commonwealth (vace.uky.edu). Warren Nash is the Executive Director of the Von Allmen Center and he can be contacted at 859.257.6871 or warren.nash@uky.edu.
The COVID Recession

At the end of 2019, the U.S. economy was adding to its longest expansion in history. The main economic concerns related to slowing global growth and uncertainty over U.S. trade policy. These concerns were quickly overshadowed as the potential severity of COVID-19 and the steps needed to fight the pandemic became clearer. These steps involved making challenging trade-offs between public health and economic activity. The economic losses have been substantial. Kentucky and the nation experienced record losses in output and employment. Although the aggregate impact on Kentucky’s economy mirrors the national impact, several of Kentucky’s industries were hit harder. As significant as these losses have been, they must be weighed against the benefits of slowing the spread of the virus. Unfortunately, there is still a great deal that is not known about how the pandemic has affected the nation and Kentucky.

Contraction in Economic Activity

Real gross domestic product (GDP), which measures the value of goods and services produced adjusted for inflation, plummeted during the second quarter as states issued social distancing orders and businesses suspended operations to curtail the virus. U.S. real GDP for the 2nd quarter declined at an annual rate of 31.4 percent from the prior quarter, while Kentucky’s real GDP declined at an annual rate of 34.5 percent (Figure 1). Care should be taken when interpreting these figures. This does not mean that GDP was nearly a third lower than the
previous quarter. The U.S. Bureau of Economic Analysis publishes quarterly changes in GDP using annual rates to make it easier to compare quarterly and annual changes. This shows the rate if the quarter’s decline persisted for four quarters. Not annualized, these rates indicate that the value of goods and services produced declined by nine percent for the U.S. and ten percent for Kentucky. Regardless of how these rates are stated, the 2nd quarter showed the largest single decline of GDP in history.

As restrictions were eased, U.S. real GDP increased by 33.1 percent in the 3rd quarter. Although this was the largest increase in U.S. history, it was still 2.9 percent lower than the same quarter last year. Third quarter estimates for Kentucky were not available for this publication.

Prior to the pandemic, Kentucky’s exports totaled 15 percent of the state’s GDP, compared to 12 percent for the U.S. However, as the global economy contracted, demand for Kentucky’s exports fell. Kentucky exports for the 2nd quarter of 2020 were 46 percent lower than the same quarter in 2019. U.S. exports were down 30 percent for the same period. The 3rd quarter showed slight improvement but was still down 29 percent for Kentucky and 13 percent for the nation. Transportation equipment, particularly aerospace products and parts, accounted for much of Kentucky’s export decline as demand for air travel decreased. Kentucky’s exports of transportation equipment totaled over $19 billion in 2019, with aerospace accounting for $14.6 billion of this amount. Kentucky’s aerospace exports were down 67 percent during both the 2nd and 3rd quarters.

Disruption in Employment

Governor Beshear declared a state of emergency on March 6 and followed with several actions to curb the virus including recommending that schools close beginning March 16; banning mass gatherings on March 19; and closing non-
essential in-person retail business starting March 23 (Kentucky’s Response to COVID-19). Even before these measures were taken, consumers were starting to avoid activities that required them to be in close proximity of others. For example, data from Opportunity Insights show that consumer spending on entertainment and recreation was down 16.6 percent as of March 1st compared to January. As businesses suspended and curtailed operations to help fight the spread of the virus, many also had to trim payrolls. From January to April, Kentucky’s employment declined by a total of 325,100 jobs, or 16.7 percent (Figure 2)—surpassing employment lost during the Great Recession. National employment declined by 14.4 percent from January to April.

Losses were widespread, with all of Kentucky’s major industries reporting declines. However, losses were concentrated among businesses where workers and customers are in close proximity. By April, employment in leisure and hospitality was down 95,300, or 46 percent, from the beginning of the year. Retail trade was down 31,400 jobs, or 15.1 percent. Education and health care employment, which typically grows even during recessions, contracted by 12.7 percent as elective procedures were postponed.

Many of the lost jobs returned quickly as restrictions were eased and businesses adapted their operations (Figure 3, next page). As of October 2020, Kentucky recovered 67 percent of the jobs lost in the first months of the pandemic. While Kentucky’s employment was still down 5.5 percent from January, this was slightly better than the nation, which was down 6.5 percent from January. Construction was a bright spot for Kentucky’s economy. As of October, construction employment in the Commonwealth increased by 5.2 percent compared to January. U.S. construction employment was still down 3.2 percent. Kentucky’s leisure and hospitality sector has recovered more of its losses than the rest of the nation. From January to October, employment in this sector was down 8.2 percent for Kentucky but only 20.4 percent for the U.S. However, Kentucky’s
information, financial activities, and professional and business services jobs are recovering at a slower rate than the rest of the nation. Kentucky’s manufacturing employment was still down 13,000 jobs, or 5.2 percent.

Unemployment rates for both Kentucky and the nation jumped in April (Figure 4). By June, Kentucky’s rate had returned to pre-pandemic levels even though the nation’s rate remained high. Although the economy was beginning to recover and some workers had returned to their jobs, an increase in workers leaving the labor force was the main reason Kentucky’s unemployment rate fell. Workers who are not actively searching for employment are classified as “not in the labor force” rather than unemployed. This applies even if the worker would like a job. As recently unemployed workers stopped searching for work, the labor force decreased, making the unemployment rate appear low. As a result, changes in Kentucky’s unemployment rate over the last few months likely do not reflect the current status of the state’s economy.

Minority workers and workers with less education bore a disproportional share of the employment losses as they worked many of the jobs where losses were concentrated. Nationally, the unemployment rate for those with less than a high school education increased from 5.5 percent in January to 21.2 percent in April (Figure 5). The unemployment rate for college educated workers increased from two percent to 8.4 percent during this same period.

The national gap in the employment to population ratios between blacks and whites had been slowly shrinking since the great recession. In 2010, there was a 7.2 percentage point difference, but the gap shrank to less than two points just before the recession (Figure 6). The gap widened to 4.4 points as of October 2020. While data on how these populations were affected in Kentucky is currently limited, the impacts in the Commonwealth are likely to be similar to the national impacts.
Difficult Policy Trade-offs

Public policies often involve challenging and controversial trade-offs. For social distancing orders, such as business closures, the trade-offs involve sacrificing current and future economic activity for improvements in public health and safety. Economists generally evaluate policies by comparing the benefits each policy generates for society to the costs it imposes on society. Generally, policies that generate the largest net benefits should be adopted. Analyzing the costs and benefits of social distancing orders is complicated by several factors. For example, those who bear the cost are not necessarily those who directly benefit from the policy. While distributional issues do not directly affect the calculation of net benefits, they do affect the political debate. There is also substantial uncertainty about the long-term effects of the pandemic with and without social distancing orders.

Many of the current costs are clear, such as the reductions in goods and services produced and the number of workers employed. However, it is not clear how much of the reduction in economic activity should be attributed to an individual state’s decision to close businesses. Other costs, particularly future costs, such as the impact that school closures and the shift to on-line education could have on education quality and future earnings, are less obvious. While schools and teachers have made substantial efforts to preserve education quality for their students, if quality does decline, future productivity could suffer.

The most often discussed, and likely largest, benefit of social distancing is the potential reductions in mortality rates. Courtemanche, et al., estimated that state shelter in place orders and closures of restaurant dining rooms, bars, entertainment centers, and gyms resulted in statistically significant reductions in confirmed new COVID-19 cases. They estimated that social distancing orders may have prevented over 2,000 deaths in Kentucky during the early weeks of
the pandemic (Blackford). Nationally, shelter-in-place orders may have prevented 250,000 to 370,000 deaths through May 15th (Lyu and Wehby).

Comparing lives saved to lost economic activity requires making an uncomfortable determination of how much society is willing to pay to prevent a person from dying from COVID-19. While uncomfortable, this is an important question because the costs incurred to prevent COVID from spreading could have been allocated to other uses that might have provided greater value to society. By observing the trade-offs that people make between money and risk, such as how much additional income a worker would need to take on a riskier occupation, economists have estimated the value of statistical life (VSL), which is often used to value policies that reduce deaths. Estimates vary, but $12 million per life is often used for policy analysis when considering an average person (Boardman et al.) With many of the COVID related deaths occurring among the elderly and those with underlying health conditions, the full VSL life may overstate how much society is willing to pay to prevent these deaths. Another way to value these benefits is to consider the quality adjusted life years (QALY) saved. Reductions in mortality for an older individual would save fewer QALYs than for a young individual.

Early efforts to evaluate COVID-19 suppression policies suggest the net benefits are likely to be positive. Using the VSL, Thunstörm, et al., estimated that the value of lives saved in the U.S. from social distancing exceeded reductions in output by $5.2 trillion. Broughel and Kotrous estimated the net benefits based on the value of lifetime production lost from COVID-19 related deaths. Because older individuals have fewer productive years ahead, their estimates of benefits from lives saves is substantially lower—$321,000 per person compared to $12 million for VSL. Even with the lower values assigned to lives saved, they conclude the net benefits to COVID-19 suppression policies are most likely positive.
is also a question of whether social distancing orders are cost effective. An analysis by van den Broek-Altenburg and Atherly suggest that the strategies to “flatten the curve” might be less cost effective than other investments in public health. Their estimates ranged from $503,000 to $6.7 million in costs per QALY, considerably higher than the generally accepted threshold of $100,000 for cost effectiveness. These higher costs per QALY indicate the same resources might have yielded similar increases in QALY at a lower cost if invested in other ways. Greenstone and Nigam used age-varying estimates of VSL to address the higher mortality rates among the older population. They concluded that there were substantial economic benefits to social distancing policies with 80 percent of the benefits accruing to those aged 50 or older.

At this point, recent research indicate that the benefits of social distancing policies likely exceed the costs. However, there remains a considerable level of uncertainty with the impacts of these policies including how long the economic recovery will take, how social distancing affects mortality, and what other costs both COVID-19 and social distancing orders impose on society. It is still too early to fully understand the costs and benefits of social distancing orders. Unfortunately, policymakers must make decisions using imperfect information. While the studies available do not definitively demonstrate the benefits of social distancing policies outweigh the costs, they do suggest these orders were a prudent strategy to address a significant and highly uncertain public health threat. As the pandemic continues to evolve, understanding these trade-offs will help policymakers formulate appropriate strategies. Looking beyond the current pandemic, policymakers will also need to consider how much society is willing to pay to reduce the risk of future threats. The answer to this question will help guide investments in public health infrastructure.
Works Cited

Like nearly every other part of the economy, the pandemic has wreaked havoc on the agricultural sector. Processing plants were temporarily closed as the coronavirus spread among workers; with more people eating at home, institutional and commercial buyers, like schools and restaurants, were not buying food products—or at least as much as usual, forcing processors to refashion packaging and supply-chain practices; and exports were depressed as foreign economies grappled with the consequences of the global pandemic. Were it not for various governmental assistance programs, the agricultural sector would have experienced nearly a 40 percent hole in U.S. net farm income in 2020.

The UK Department of Agricultural Economics is forecasting that Kentucky agricultural cash receipts will total $5.5 billion in 2020, matching the 2019 receipts; but their forecast for 2021 hints at potential market volatility and financial uncertainty. They suggest that “an improved price outlook may enable cash receipts to be slightly higher in 2021, but net farm income will likely fall given anticipated reductions in government payments. This potential outcome will likely put additional financial stress on many farms in 2021 that were facing cash flow/liquidity/depleted working capital concerns entering 2020.”

The agricultural sector accounts for about 1.3 percent of Kentucky’s gross domestic product and has been steadily declining for the last several years. Even though its contribution to the state continued on the next page
Agriculture

Agriculture
economy has been generally decreasing, the impact of agriculture in a local or regional economy can be significant. This past year marked the first meeting of the Kentucky AgriTech Advisory Council, a working group of public, private, and nonprofit sector representatives with the expressed goal of positioning the state to become a global leader in the agritech industry.

Agricultural commodities and related activities can have an important economic impact, with studies of the equine and bourbon industries, for example, showing economic impacts in the billions of dollars. Kentucky’s farm traditions have long yielded significant economic benefits to the state, but the development of more refined, downstream products that use these raw materials holds the promise of even greater returns. In fact, the growth of Kentucky’s value-added food production has significantly outpaced the competitor states and the U.S. over the last ten years.

While some form of agricultural enterprise is present in every Kentucky county, many rural communities are relatively more dependent on this industry for jobs and income. Several groups around the state are aspiring to create jobs and increase incomes in the agricultural sector. One low-tech strategy is to improve access to locally sourced food through the development of modern community-based farmer’s markets. This is a promising strategy since farms that sell directly to consumers are more likely to stay in business. Ten years ago, there were 114 farmers’ markets registered with the Kentucky Department of Agriculture, and now there are more than 160.

The past three decades have seen significant changes in Kentucky’s agricultural profile. In 1990, tobacco was the state’s signature commodity and constituted nearly a quarter of Kentucky’s farm receipts (23.8%). By 2019, it had declined to 5.1 percent of Kentucky’s total farm receipts. Tobacco has waned, but hemp has waxed. While hemp continues to attract attention as a potential mainstay crop for Kentucky farmers, excitement waned in the last year due to a supply glut, market uncertainties, and the pandemic. The Kentucky Department of Agriculture (KDA) reported that 960 farmers sought hemp licenses in 2020, but 157—or 16 percent of these farmers—had no plans to grow hemp in 2020; they simply needed the license to store and eventually sell last year’s crop. As the market for hemp products matures, hemp could eventually emerge as an important cash crop for Kentucky’s rural communities. However, many growers, processors, and investors are hitting the “pause button” for the short-term as this burgeoning industry struggles through its growing pains.
The family farm has nearly become a quaint ghost of Kentucky’s past. Over the last half century, two major trends have transformed the state’s countryside: the consolidation of small, family-owned farms into larger enterprises; and the conversion of agricultural land to urban (or suburban) uses. As seen here, roughly one-third as many farms exist today as there were in 1950, while the average size of Kentucky’s farms has doubled. Currently, there are approximately 74,800 farms in Kentucky with an average size of 172 acres. Most of the farms in Kentucky are owned by an individual or a family (91%), and 43 percent of Kentucky farmers spend at least 200 days a year off the farm working in other jobs.

Source: Kentucky Department of Agriculture & USDA
AG ECONOMY BAROMETER

The *Ag Economy Barometer*, which is produced by Purdue University agricultural economists, is a survey based assessment of the national agricultural economy. It reflects the beliefs, attitudes, and sentiments of 400 U.S. agricultural producers who are asked five questions on a monthly survey: would you say that your operation today is financially better off, worse off, or about the same compared to a year ago?; do you think that a year from now your operation will be better off financially, worse off, or just about the same as now?; turning to the general agricultural economy as a whole, do you think that during the next twelve months there will be good times financially, or bad times?; which would you say is more likely, U.S. agriculture during the next five years will have widespread good times or widespread bad times?; and, thinking about large farm investments – like buildings and machinery — generally speaking, do you think now is a good time or bad time to buy such items? An overall score is calculated relative to the baseline period from October 2015 to March 2016, which is assigned a value of 100. Clearly, trade tariffs and their potential impact on the national agricultural economy produced considerable volatility in the barometer over the past years, and the pandemic caused it to plummet. However, since falling to 96 in April 2020, it rose to a new high in October 2020 (183).

![National Ag Economy Barometer, October 2015 to November 2020](image)

Source: Purdue University Center for Commerical Agriculture, Producer Survey, December 2020
Indices of Current Conditions & Future Expectations

As described on the facing page, the Ag Economy Barometer is a survey based assessment of the national agricultural economy. It reflects the collective expectations of 400 U.S. agricultural producers across the country. The Ag Economy Barometer can be disaggregated into current and future expectations, as illustrated in the graph below. At the beginning of the Trump Administration four years ago, the index of future expectations was “sky high” at 169. Then, the reality of what trade wars and tariffs mean for the agricultural economy fueled considerable volatility in these indices. Despite the uncertainty of trade policy and its impact on the agricultural economy, and the downward pressure created by the COVID-19 pandemic, both indices were at record levels in October 2020. These are strong signals that U.S. agricultural producers are “bullish” on the future of American agriculture.

Source: Purdue University Center for Commercial Agriculture, Producer Survey, December 2020
While still playing an important role in some local and regional areas around the state, agriculture’s role in the larger state economy has been declining for many years. Within the Agriculture, Forestry, Fishing, and Hunting sector, the Bureau of Economic Analysis (BEA) includes “establishments primarily engaged in growing crops, raising animals, harvesting timber, harvesting fish and other animals from a farm, ranch or their natural habitats.” The BEA notes that “these establishments are often described as farms, ranches, dairies, greenhouses, nurseries, orchards or hatcheries...(and) the sector includes two basic activities: crop and animal production (farms) and forestry, fishing, and related activities.” In 1963 agriculture accounted for about 5 percent of Kentucky’s gross domestic product (GDP), compared to about three-and-a-half percent for the U.S. and competitor states. In 2019, this economic sector accounted for 1.3 percent of Kentucky’s gross domestic product, compared to 0.8 percent in the U.S. and 0.6 percent in the competitor states. South Dakota has the highest percentage among the states with agriculture accounting for 6.1 percent of its gross domestic product while Massachusetts has the lowest at 0.13 percent. Among the competitor states, Mississippi is the highest at 1.8 percent and Virginia the lowest at 0.3 percent.

Agriculture and Related Activities in Kentucky, Competitor States, and the U.S., 1963 to 2019
(agrueiculture, forestry, fishing & hunting as a percentage of GDP)

Source: U.S. Department of Commerce, Bureau of Economic Analysis
Farm mechanization and a changing state economy have resulted in a steady decline in the percentage of Kentuckians working on the farm. Farm employment is the “number of workers engaged in the direct production of agricultural commodities, either livestock or crops; whether as a sole proprietor, partner, or hired laborer.” The Bureau of Economic Analysis estimates Kentucky’s farm employment at about 82,600, which is around 3.2 percent of total employment or jobs in the state. As one can see on the chart below, this is much higher than either the competitor states or the U.S., both of which are estimated at 1.3 percent. While Kentucky’s farm employment is high compared to other states and the nation, it has decreased precipitously since the late 1960s when it was about 11 percent. Kentucky’s farm employment has been under 4 percent since 2005, and has continued to decline since that time.

Farm Employment as a Percentage of Total Employment, Kentucky, Competitor States, and the U.S., 1969 to 2019

(percentage of total jobs, includes full- and part-time employment)

Source: U.S. Department of Commerce, Bureau of Economic Analysis
VALUE-ADDED FOOD PRODUCTION

Kentucky’s farm traditions have long yielded significant economic benefits to the state, but the continued development of more refined, downstream products that use these raw materials holds the promise of even greater returns. The idea of increasing agricultural-based incomes by developing value-added food production has been embedded in the Kentucky Department of Agriculture’s strategic plans going back to the mid-1990s. Salsa, not tomatoes, is an example of a value-added food product that can enrich and sustain a farm economy. There are any number of value-added food products—from salsa to wine to jerky to jam—that provide opportunities to enrich individuals as well as communities and generate new economic opportunities that help sustain Kentucky’s rural areas. The chart below illustrates how the growth of Kentucky’s value-added food production has significantly outpaced the competitor states and the U.S. over the last ten years. Valued-added food production in Kentucky increased from $3.4 billion in 2007 to $5.6 billion in 2016 (in current dollars), representing a 63 percent increase. By comparison, the U.S. and competitor states value-added food production grew by 22 and 18 percent, respectively, over the same time period. The continued development of the state’s value-added food manufacturing sector will help provided jobs and income to Kentucky’s rural communities.

![Value Added to Food Products, Kentucky, Competitor States, and the U.S., 2007 to 2016](image.png)

Source: U.S. Department of Commerce, Bureau of Economic Analysis
FARM COMMODITIES

The past three decades have seen significant changes in Kentucky’s agricultural profile. In 1990, tobacco was the state’s signature commodity and constituted nearly a quarter of Kentucky’s farm receipts (23.8%). By 2000, tobacco ranked second and accounted for 18.5 percent of farm receipts, and by 2019 it had declined to sixth and 5.1 percent of Kentucky’s total farm receipts. While tobacco’s value has dropped precipitously, Kentucky’s other major crops—corn, soybeans, and hay—have all shown considerable improvement. The most dramatic growth, however, has been poultry—now the state’s top farm commodity. In 1990, farm chickens, broilers (chickens raised for food), and chicken eggs constituted less than 1 percent of total farm receipts (0.82%). In 2019, poultry and eggs accounted for nearly 20 percent of the $5.5 billion in total farm receipts. The dramatic swings in receipts for Kentucky’s various farm products underscores the necessity of agricultural diversity, so that farmers’ fortunes do not rise and fall based on the market for a single commodity.

<table>
<thead>
<tr>
<th>RANK</th>
<th>COMMODITY</th>
<th>VALUE OF RECEIPTS ($1,000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Poultry and eggs</td>
<td>1,078,138</td>
</tr>
<tr>
<td>2</td>
<td>Misc. animals and products</td>
<td>1,037,309</td>
</tr>
<tr>
<td>3</td>
<td>Feed crops</td>
<td>1,028,176</td>
</tr>
<tr>
<td>4</td>
<td>Meat animals</td>
<td>806,362</td>
</tr>
<tr>
<td>5</td>
<td>Oil crops</td>
<td>779,471</td>
</tr>
<tr>
<td>6</td>
<td>Tobacco</td>
<td>278,988</td>
</tr>
<tr>
<td>7</td>
<td>All other crops</td>
<td>183,109</td>
</tr>
<tr>
<td>8</td>
<td>Dairy products, Milk</td>
<td>182,325</td>
</tr>
<tr>
<td>9</td>
<td>Food grains</td>
<td>123,391</td>
</tr>
<tr>
<td>Total</td>
<td>All commodities</td>
<td>5,497,269</td>
</tr>
</tbody>
</table>

LocAl FoOd SuPplIers

Internationally, the “slow food” movement has grown exponentially, providing a boost to small farm profits in an era of industrialized agriculture and making fresher food, often organically grown, more readily available. Kentuckians are embracing the movement of foods grown closer to home, giving rise to an increasing number of bustling farmers’ markets that have helped advance agricultural diversification and make healthy fare more readily available. Farms can sell directly to consumers through farmers’ markets, on-site stores, online, and through a CSA, community-supported agriculture, which permit consumers to buy a portion of a farmer’s output—fruits, vegetables, and other farm products delivered weekly—at the beginning of the growing season. Research shows that farms engaged in selling directly to consumers are more likely to stay in business. Ten years ago there were 114 farmers’ markets registered with the Kentucky Department of Agriculture, and now there are more than 160. Of Kentucky’s nearly 76,000 farms, about 3,800 sell agricultural products directly to consumers, up from just over 3,400 in 2012. This represents 5 percent of Kentucky farms, which is lower than the competitor states (5.7%) and the U.S. (6.4%). The New England states lead the nation in selling farm goods directly to consumers, evidenced by New Hampshire (28.9%), Vermont (26.9%), and Maine (26.9%).

Farms Selling Directly to Consumers, 2017
(percentage of all farms)

Source: 2017 Census of Agriculture
Note: CS is the weighted average of the competitor states.
Organic Farming

The outlook for organic products appears strong, as consumers continue to embrace organic and locally produced commodities. According to the U.S. Organic Trade Association (OTA), consumer demand for organic has grown by double-digits nearly every year since the 1990s, with sales increasing from $3.6 billion in 1997 to $50 billion in 2018. Citing 2016 Nielsen data, the OTA reports that 82 percent of U.S. households purchase organic products (78% in Kentucky). Nationally, the number of organically certified or exempt farms increased from 14,326 to 18,166 during the five-year period from 2012 to 2017, and sales of organically produced commodities increased by 133 percent, from $3.12 billion to $7.28 billion. While the value of sales (244% increase) and number of farms (114%) has increased in Kentucky during this time period, other states appear to be pursuing organic farming with greater enthusiasm. While Kentucky’s network of small farms would seem to be an ideal place for the organic movement to flourish, the chart shows that—at least by this metric, the number of organic farms—Kentucky lags the U.S. and most competitor states. Kentucky has 24.2 organic farms per 10,000 total farms, compared to 47.9 for the competitor states and 89 for the U.S.

Source: USDA 2017 Census of Agriculture
Note: Although exempt operations (e.g., small producers) are not required to obtain organic certification in order to represent their products as “organic,” they still need to comply with all USDA organic standards.
While hemp continues to attract attention as a potential mainstay crop for Kentucky farmers, excitement waned in the last year due to a supply glut, market uncertainties, and the pandemic. The Kentucky Department of Agriculture (KDA) reported that 960 farmers sought hemp licenses in 2020, but 157—or 16 percent of these farmers—had no plans to grow hemp in 2020; they simply needed the license to store and eventually sell last year’s crop. Nonetheless, hemp’s roots are deeply planted in the state’s history. The cultivation of hemp began near Danville in 1775, nearly two decades before statehood in 1792. Used for food, oil, rope, cloth, and paper, Kentucky was the largest hemp producer in the United States in the mid-19th century. The importance of industrial hemp for Kentucky’s agricultural economy has waxed and waned through the years with changing federal laws. By April of 2020, 48 states had passed legislation allowing commercial, research, or pilot programs related to industrial hemp. While the potential economic impact of industrial hemp for Kentucky’s economy is uncertain, its production has grown significantly since the 2014 Farm Bill. KDA reports that the number of acres planted increased from 33 to 26,500 from 2014 to 2019. As the market for hemp products matures, hemp could eventually emerge as an important cash crop for Kentucky’s rural communities.

States Allowing the Cultivation of Industrial Hemp
(Commercial, Research, or Pilot Programs)

Source: National Conference of State Legislators (NCSL), as of April 2020
IT IS AN UNDERSTATEMENT THAT 2020 has been a tough year, and Kentucky reflects the broad national trends of additional lives and jobs lost due to the pandemic. However, the emotional pain of losing a loved one, along with the economic hardship associated with a lost job, is not evenly distributed across the country. The nation’s rural areas have been disproportionately affected by COVID-19 induced losses.

In this section, we present a county-level assessment of lives and jobs lost to illustrate the combined effect of deaths attributed to COVID-19, as well as the economic hardship associated with jobs that have gone away in the past year. We find that 14.6 percent of metro counties nationally are in the bottom quartile—the hardest hit by loss—while slightly rural and mostly rural counties are disproportionately represented in the bottom quartile, 24.4 and 36.7 percent, respectively. In other words, over one-third of mostly rural counties are in the hardest hit group of counties, while less than 15 percent of metro counties are in the hardest hit quartile.

The COVID-19 pandemic has exacerbated the economic divide between urban and rural America that has been widening for the last three and a half decades. Numerous social, demographic, health, and economic trends paint a picture of widespread community distress across wide swaths of the country. These trends are especially intense in Kentucky, since about 41 percent of Kentucky’s population live in somewhat or mostly rural counties, compared to about 14

continued on the next page
Community characteristics exert a strong influence on economic outcomes. Studies have long found that individual economic success is associated with neighborhood or community quality. Research published in 2015 by economists Raj Chetty and Nathaniel Hendren, *The Impacts of Neighborhoods on Intergenerational Mobility: Childhood Exposure Effects and County-Level Estimates*, concludes that the quality of a child’s neighborhood can have a long-lasting effect into adulthood on college attendance, teenage birth rates, poverty status, and income. Based on related research from economist Eric Chyn published in 2016, the effect of a neighborhood on one’s future economic well-being is even stronger than what Chetty and Hendren found.

Concepts like community development and economic development are linked so tightly that the terms are frequently used interchangeably. Economic activities take place in our communities, so characteristics that measure community connections, strengths and weaknesses, and resiliency are vital for understanding economic conditions and future economic prospects. Having a strong and robust civil society has many benefits. As was noted in a report from the University of Kentucky Nonprofit Leadership Initiative, *More than Charity*, “Nonprofits provide access to the arts, protect the environment, feed the hungry, assist the disabled in finding meaningful employment, provide affordable mental health services, teach the illiterate to read, provide quality child care for working parents and hundreds of other services that strengthen our communities and enhance our quality of life.”

Measuring a concept as amorphous as community strength and social capital is difficult. Nonetheless, except for the crime rate, Kentucky lags on many measures of community strength, including the number of hours volunteered, level of charitable giving, and number of nonprofits, lag behind the national average. The level of social capital is unevenly spread across Kentucky—as the map on page 25 reveals. Efforts to enhance social capital will likely take on renewed emphasis in the future as governments search out community-based organizations, non-profits, businesses, and citizens to forge partnerships in order to meet new and existing challenges facing our communities.
COVID-19 INDUCED LOSSES

It is an understatement that 2020 has been a tough year, and Kentucky reflects the broad national trends of additional lives and jobs lost. However, the emotional pain of losing a loved one to the pandemic along with the economic hardship associated with a lost job is not evenly distributed across the country. Here we combine the two—lives and jobs lost—to illustrate the combined effect of deaths attributed to COVID-19 as well as the economic hardship associated with jobs that have gone away in the past year. Converting these two variables to Z-scores, year-over-year county-level job changes (August 2019 to August 2020) and county-level deaths attributed to COVID-19 (additional deaths from February 1, 2020 to October 17, 2020) that have been aggregated to hospital referral regions (HRR) and normalized by total population, yields a county-level picture of the combined economic and human suffering from the COVID-19 pandemic. The number of employed Americans decreased by 10.2 million from August 2019 to August 2020; during the same time period, the number of employed Kentuckians decreased by 128,000. And, nationally an estimated 204,000 Americans died from COVID-19, while over 1,250 Kentuckians have perished from the virus. The darker areas on the map reflect higher losses, and bring the picture of uneven pain from the pandemic into stark relief.

Source: Estimated by the author using BLS employment numbers and CDC COVID-19 provisional death counts.
Social Capital Index

Many scholars have advanced the idea that strong community structures are beneficial to economic health (e.g., James Coleman, 1990; Robert Putnam, 1993; Francis Fukuyama, 1995). We know that strong communities are important for several reasons, but the relationship between social capital—which the OECD defines as the “networks together with shared norms, values and understandings that facilitate co-operation within or among groups”—and economic growth is still being explored and studied. Pulling from the existing economic development literature, The World Bank notes that “development and growth specialists are uncovering the importance of social cohesion for societies to prosper economically and for development to be sustainable.” Rupasingha, Goetz, and Freshwater (2000, 2006) operationalize the concept of social capital by using variables that include, but are not limited to, voting rates, the number of nonprofit organizations, and the presence of community-based membership organizations. Using the same method, we have produced updated county-level estimates—as shown in the map below. The darker areas of the map indicate denser networks of social connections while the lighter areas suggest lower levels of social capital. Kentucky is located in a region of the country where networks of social connections are less dense.
Strong, resilient, and vibrant communities are created and nurtured by engaged and connected citizens. The economic development literature linked to social capital suggests that areas with dense networks of citizens who are invested in their communities derive economic benefits. For example, Rupasingha, et al., (2000, 2006) find that “social capital has a statistically significant, independent positive effect on the rate of per-capita income growth.” These authors have developed an approach for constructing a county-level social capital index (see the facing page) which we have updated with more current data and present in the map below. These estimates reveal a relatively dense concentration of social capital in Western Kentucky and in Central Kentucky (darker areas), but much less in Eastern Kentucky (lighter areas).

Social Capital in Kentucky, 2010 to 2020

Source: Author’s analysis of multiple data sources, various years (see Notes & Sources).
Some studies have linked participation in civil society—volunteering for example—to higher levels of community prosperity, higher achievement in schools, and improved individual health. Volunteers can tackle problems such as poverty, illiteracy, and drug abuse that public or private sectors have not adequately addressed—making a community more attractive for economic development. Some research even suggests that members of communities with high levels of civic participation enjoy better health and live longer. An estimated 25.2 percent of Kentucky residents volunteered at some point in 2017; this is statistically no different from the U.S. (27.8%) or competitor states (28.3%) averages. Nationally, the highest volunteer rate belongs to Utah (47%), while the lowest is found in Mississippi (17.5%).

Residents Who Volunteer, 2017, Kentucky, Competitor States, and the U.S.
(percentage of individuals 15 and older)

Volunteer Hours

The Corporation for National and Community Service estimates that 978,627 Kentuckians contributed 96.6 million hours of volunteer service in 2017, with an estimated value of $2.3 billion. These numbers are significantly higher than the estimates of two years ago. Kentuckians contributed almost 27 hours per resident 15 years and older in 2017. The total annual estimated value of volunteer service in Kentucky is based on the Independent Sector’s annual estimate of a volunteer hour in Kentucky at $21.17. The average number of volunteer hours in Kentucky (26.8) was about the same as the competitor states (26.3) and U.S. (26.1) averages. At 57.6 volunteer hours per resident 15 years old and older, Utah ranks first in the country (Mississippi is last with 17 hours). Volunteers, community groups, and nonprofit organizations add essential social and economic value to Kentucky’s economy and society.

Volunteer Hours, 2017, Kentucky, Competitor States, and the U.S.

(average hours served in a year, per resident 15 and older)

Participation in Local Groups

As we noted in the social capital discussion, strong, resilient, and vibrant communities are created and nurtured by engaged and connected citizens. The economic development literature linked to social capital suggests that areas with dense networks of citizens who are invested in their communities derive economic benefits. Some measures of this include the presence of community-based membership organizations. These include establishments like religious, civic, social, business, political, professional, labor, and sports organizations. An estimated 25.8 percent of Kentucky residents participate in a local group or organization. This is slightly lower than the competitor state average (26.9%), and much lower than the U.S. average (29.7%). Nationally, the highest participation rate belongs to Oregon (43.1%), while the lowest is found in Florida (19.2%).

Participation in Local Groups or Organizations, 2017, Kentucky, Competitor States, and the U.S.

Source: https://www.nationalservice.gov
FAVORS FOR NEIGHBORS

An indicator of community strength, social capital, and neighborhood cohesiveness is the extent to which neighbors do favors for each other. These favors include things like watching each others children, helping with shopping, house sitting, lending garden or house tools, and other small acts to lend a helping hand. About half of Americans do occasional favors for neighbors, with an estimated 51.4 percent indicating they do so with varying frequency. There are virtually no differences between Kentucky, the competitor state average, and the U.S. in the frequency with which neighbors do favors for each other. Nationally, the highest participation rate belongs to Utah (70.4%), while the lowest is found in Nevada (43.2%).

Residents Doing Favors for Neighbors, 2017, Kentucky, Competitor States, and the U.S.

Source: https://www.nationalservice.gov
America’s giving spirit continued to rise in 2019 with giving by individuals, bequests, foundations, and corporations increasing by an estimated 5.1 percent according to The Giving Institute. At $310 billion, charitable giving by individuals in 2019 was equal to about 69 percent of the estimated total contributions from all sources, $450 billion. Nationally the average charitable contribution among those who itemize deductions—which is 11.5 percent of those who file an income tax return—equalized $11,206 for the 2018 tax year, compared to $11,700 in Kentucky. Among the competitor states, Tennessee has the highest amount at $16,986 and Virginia the lowest at $7,976. Nationally, Hawaii is the lowest at $5,090 and Arkansas is the highest at $30,484. Obviously, those who do not itemize deductions on their tax returns frequently make charitable contributions, but it is estimated that itemizers account for about 80 percent of all charitable contributions from individuals. Because of changes in the federal tax law that took effect in 2018 (e.g., increase in the standard deduction), the number of itemizers declined in the 2018 tax year by 63 percent, from 47.1 million to 17.6 million. Likewise, the total dollar amount claimed as charity on itemized returns declined from $256.3 billion in 2017 to $197.2 billion in 2018—a 23 percent decrease; these changes explain the increased average amounts for 2018.
Like the number of volunteers or the amount of money donated to charity, the number of nonprofits is an indicator of a community’s social capital. The 1.7 million nonprofits in the U.S. include social organizations (e.g., art, health, education, and advocacy groups), labor unions, business and professional organizations, and religious congregations. Nonprofits also have a direct economic impact. According to a 2019 report from the Urban Institute, *The Nonprofit Sector in Brief*, “The nonprofit sector contributed an estimated $985.4 billion to the US economy in 2015, composing 5.4 percent of the country’s gross domestic product (GDP).” The average number of nonprofits per 10,000 population in the U.S. is 53.3, compared to Kentucky’s 46.4. Among the competitor states, Kentucky has the fewest number of nonprofits per 10,000 population. At 61 per 10,000 population, Ohio has the most among competitor states. Nationally, Montana has the highest number overall with 103.5 while Utah has the lowest at 33.4. As of October 2020, Kentucky had 20,749 registered nonprofit organizations with $31.4 billion in annual revenue and $56.5 billion in assets.

Registered Nonprofit Organizations, 2020, Kentucky, Competitor States, and the U.S.

(per 10,000 population)

Source: Internal Revenue Service, Exempt Organizations Business Master File (2020, October) & U.S. Census, 2019

Note: CS is the weighted average of the competitor states
Recent research shows that intergenerational (economic) mobility can be muted by the constellation of factors associated with growing up in a single-parent family (Chetty, et al., 2014). In 1960, approximately 12 percent of children under 18 in the U.S. lived with only one parent; in 2019, however, over one third of this county’s children lived in a single-parent family (34.5%). As a country we went from about one in ten children to over one in three—a substantial demographic shift. The research shows that children living in single-parent households tend to face more significant obstacles in life, which present emotional, health, economic and academic challenges for many of these children. And there can be lifelong economic consequences. As Raj Chetty and his colleagues have noted, “the United States is better described as a collection of societies, some of which are ‘lands of opportunity’ with high rates of mobility across generations, and others in which few children escape poverty.” Nationally, Louisiana has the highest rate of children living in single-parent families at 46.6 percent and Utah has the lowest rate at 18.7 percent. Both the Kentucky and competitor state percentages are around 36 percent, which is similar to the U.S. average.

Source: Census Bureau, 1-year estimate, 2019, Table B23008
As noted on the facing page, an estimated 35.6 percent of children in Kentucky live in single-parent families. Yet, there is wide variation among Kentucky counties, bounded by Oldham County at 17 percent and Fulton County at 67 percent. Some have written that America has become two nations—not divided by class so much as by whether one comes from a single- or two-parent household. As James Q. Wilson, the eminent political scientist asserted two decades ago: *Children in one-parent families, compared to those in two-parent ones, are twice as likely to drop out of school. Boys in one-parent families are much more likely than those in two-parent ones to be both out of school and out of work. Girls in one-parent families are twice as likely as those in two-parent ones to have an out-of-wedlock birth. These differences are not explained by income....children raised in single-parent homes [are] more likely to be suspended from school, to have emotional problems, and to behave badly.* Of course, one’s family environment does not determine one’s future, but it can create significant obstacles for children that last into adulthood, with clear implications for the state’s economy.

Children in Single-Parent Families, 2015-2019
(percent of children under 18 years old)

Source: American Community Survey, 2019 5-Year Estimate, Table B23008
NEIGHBORHOOD QUALITY

The incidence of crime is one way to measure the quality of a neighborhood. Other factors that detract from neighborhood quality include graffiti, dilapidated housing, and litter. To gauge the quality of neighborhoods in which children live, the National Survey of Children’s Health posed several questions to survey respondents, including “In your neighborhood, is there litter or garbage on the street or sidewalk?,” “Does the neighborhood contain poorly kept or dilapidated housing?,” and “In your neighborhood is there vandalism such as broken windows or graffiti?” The numbers in the chart below are estimates of the percentage of children living in neighborhoods where none of these three detracting elements are present. Kentucky’s percentage (74.2%) is the same as the U.S. percentage. Virginia has the highest value among all of the states (83.3%) and New York the lowest (57.5%). At 51.1 percent, the District of Columbia is even lower than New York.

Children Living in Neighborhoods Without Detracting Elements, KY, Competitor States, and the U.S., 2017-2018
(percent living in areas with no graffiti, dilapidated housing, or litter)

Source: 2017-2018 National Survey of Children’s Health
Another signal of community well-being is whether students feel unsafe at school, and Kentucky is at the national average. The Centers for Disease Control and Prevention (CDC) Youth Risk Behavior Surveillance System (YRBSS) Survey is a national survey of high school students, grades 9 through 12. The figure below reflects the percentage of high school students who did not go to school because they felt unsafe at school or on their way to or from school (on at least 1 day during the 30 days before the survey). Kentucky’s 9.5 percent is not statistically different from the national (8.7%) or surrounding state (SS) weighted average (10.1%). Including Kentucky, there were 41 states that participated in the survey and adopted this question; twenty-three states are statistically no different from Kentucky, seven have lower percentages, and ten have higher percentages.

Note: SS indicates 10 surrounding states that participated in this survey (AL, GA, IL, MO, MS, NC, SC, TN, VA, & WV).
According to the FBI 2019 Uniform Crime Report, the violent crime rate fell 0.5 percent when compared with the 2018 rate; the property crime rate declined 4.1 percent—the seventeenth consecutive year the property crime rate estimates have declined. In the U.S. overall, the estimated rate of violent crime was 367 offenses per 100,000 inhabitants, and the property crime rate was 2,110 offenses per 100,000 inhabitants. The number of reported property crimes per 100,000 persons in Kentucky is 1,897, a rate lower than all competitor states except for Virginia, West Virginia, and Illinois. Reports of violent offenses, including murder and nonnegligent manslaughter, forcible rape, robbery, and aggravated assault, also were well below the national rate here and below the rates reported by eleven of twelve competitor states (Virginia’s rate is lower). Kentucky’s comparatively low crime rate remains a strong asset that contributes to a sense of well-being and trust which, in turn, helps create caring places that nurture productive lives.

Source: US Federal Bureau of Investigation, 2019 Crime in the United States
Any discussion of community would be incomplete without consideration of the role of crime, which can instill fear, undermine trust, and fray connections—and impact economic development decisions and outcomes. Around 80 percent of Group A offenses in Kentucky fall into one of five categories: larceny/theft (26%), drug/narcotic (25%), assault (15%), burglary/breaking and entering (7%), and destruction/damage/vandalism of property (8%). Group A offenses are serious crimes that include the categories listed above as well as arson, homicide, and sex offenses. The total number of Group A offenses increased by only 0.8 percent from 2016 to 2017, but then decreased by 2.3 percent from 2017 to 2018. Perhaps it is no surprise that Kentucky’s metro areas have the highest rates of serious crime, but rural areas of the state are certainly not immune to the same types of serious criminal offenses taking place in the largest cities. This map shows the number serious criminal offenses (Group-A) per 1,000 population at the county level. At a rate of 13.4, Breckinridge County has the lowest rate of Group-A offenses per 1,000 population in the state while Daviess has the highest at 95.2. By comparison, Kentucky’s overall rate is 61.8. The rate for Kentucky’s 35 urban counties is 71.1, which is higher, of course, than the rate for slightly rural (58.1) or mostly rural (40.3) counties.

Kentucky Criminal Offense Rates by County, 2018
(Group-A Offenses per 1,000 Population)

Note: Author’s calculations from Kentucky State Police, Crime in Kentucky, 2018
Incarceration rates are windows through which one can assess the nature, quality, and character of a community. According to a October 2020 report from the U.S. Department of Justice, *Prisoners in 2019*, the United States had an estimated 1,430,800 prisoners under the jurisdiction of state and federal correctional authorities as of December 31, 2019. This is equivalent to 419 prisoners per 100,000 population. Kentucky’s rate, by comparison, was somewhat higher at 516. The state with the highest incarceration rate in 2019 was Louisiana (680), while Massachusetts was the lowest (133). As one can see in the chart below, Kentucky’s incarceration rate is toward the high end when comparing it to the nearby states. Kentucky’s prison population steadily increased from 3,588 in 1980 to 21,823 in 2007. It declined, however, to 20,330 by 2013. Unfortunately, fueled by the opioid epidemic, it has started to trend upward again and reached 23,082 in 2019.

Prison Incarceration Rate, 2019, Kentucky, Competitor States, and the U.S.

(prisoners of all ages)

Source: U.S. Department of Justice, Office of Justice Programs, Bureau of Justice Statistics, *Prisoners in 2019*
Disconnected Young Adults

Strong, resilient, and vibrant communities are created and nurtured by actively engaged, invested, and connected citizens. The figure below shows the percentage of young adults (18 to 24 years old) who are “disconnected.” These young adults are not enrolled in school, are not currently employed, and have no degree beyond a high school diploma or GED. Collectively these factors could indicate that a young person is having difficulty making a successful transition to adulthood. Kentucky’s 15.1 percent is not statistically different (using a 95% confidence interval) from Alabama, Georgia, Mississippi, South Carolina, or West Virginia. However, Kentucky is statistically higher than the competitor state (12.4%) and U.S. (11.8%) averages, as well as most of the remaining competitor states (i.e., IL, IN, MO, NC, OH, TN & VA). Alaska has the highest percentage of disconnected young adults at 20.5 percent, and Massachusetts has the lowest percentage at 6.8 percent. Among all states and the District of Columbia, 1 is higher, 35 are lower, and 14 are statistically the same as Kentucky.

![Disconnected Young Adults, 2019, Kentucky, Competitor States, and the U.S.](image)

Source: Estimated by the author using data from 2019 1-Year U.S. Census ACS PUMS
PUBLIC PARTICIPATION IN THE ARTS

A thriving local culture represents a cornerstone of quality of life, allowing citizens to enrich and educate themselves by experiencing the arts and learning about history. Cultural amenities can constitute an integral role in site selection decisions, evidenced by the list of factors Amazon will consider in the siting of its second headquarters. The so-called “creative class” places a premium on living in locations that offer enriching and compelling lifestyles. From music to museums, the arts matter. The chart below shows three items included in the Survey of Public Participation in the Arts that offer insight about the availability of the arts and whether individuals participate in them. They are: whether one has visited an art museum or gallery during the last 12 months; whether one has visited a historic park or monument, toured buildings or neighborhoods for historic or design value during the last 12 months; and whether one has attended a live book reading or a poetry or storytelling event during the last 12 months. Kentucky is statistically lower than the competitor states and the U.S. on museum visitation and public readings, but statistically no different on historic site visitation. As the competitive pressures of a highly skilled global workforce rise, it becomes increasingly important for the Commonwealth to cultivate an environment that will help to attract a creative and entrepreneurial labor force.

Public Participation in the Arts, 2012-2015
Kentucky, Competitor States, and the U.S.
(percent participating in previous 12 months)

The Economic Decline during the Great Recession was characterized by a long, slow descent, followed by an even longer and slower recovery. In contrast, the COVID-19 recession has been like falling off a cliff, and it remains to be seen how long the recovery will take.

In the 18-month period from December 2007 to June 2009—the peak of the previous economic expansion to the trough of the Great Recession—Kentucky lost nearly 104,000 jobs, or about 5.6% of its total nonfarm employment. This was not, however, the low point for job losses. Kentucky, along with the rest of the nation, continued to shed jobs for another 8 months, and finally reached the low point in February 2010. In this 26-month period, Kentucky lost 118,200 jobs, a 6.4% decline.

The COVID-19 recession stands in stark contrast with its speed, depth, and reach—in four months—from January to April 2020—Kentucky lost over 325,000 jobs, or 16.7% of its total nonfarm employment; the economic jolt induced by the pandemic has been stunning. This is nearly three times the number of jobs lost during the Great Recession, compressed into a fraction of the time. As of October 2020, however, the state had recovered roughly two-thirds of jobs lost during the first months of the recession, but the recovery remains far from complete. Kentucky’s employment was still down 107,600 jobs, or 5.5%, from January 2020.

As of November 2020, Kentucky’s unemployment rate (5.6%) was slightly continued on the next page
better than the national rate (6.7%), but the employment-population ratio, which some believe is a better indicator of economic activity and economic performance than the more frequently referenced unemployment rate, shows that Kentucky has one of the lowest employment-population ratios in the country. In August 2020, Kentucky’s employment-population ratio was 51.9%, ranking it 46th nationally—just ahead of Arkansas, Hawaii, Mississippi, New Mexico, and West Virginia. In comparison, the U.S. employment-population ratio was 55.9%. The adverse and wide-ranging impact of the pandemic was similar in Kentucky to the nation overall, with both ratios falling 6.5% from August ‘19 to August ‘20.

These trends could reshape the economy in ways that are not yet apparent. A significant number of workers were able to work remotely during the pandemic, evidenced by over one quarter (26.7%) of respondents to a U.S. Census survey nationally indicating that they teleworked or worked from home for pay during the pandemic. The percentage among Kentucky workers was 18.8%, but it was as high as 41.5% in Maryland and 68.7% in D.C. As these arrangements become routinized for both employees and employers, it promises to expand an otherwise geographically bound labor market in ways that could benefit workers residing outside of metropolitan areas, a trend that could benefit Kentucky.

Another behavior that has become increasingly common during the pandemic is on-line shopping, and, while convenient for consumers, this could be problematic for smaller, brick-and-mortar retail establishments, as well as for commercial banks that serve as their lenders; it could also portend problems for retail banks themselves as individuals migrate to mobile banking. According to William S. Demchak, chairman and CEO of PNC Financial Services, who was quoted in a December 2020 Wall Street Journal article, “What’s clear is consumer behavior has changed, and my belief is, in a lot of ways, it’s changed permanently with this adoption to digital...We’ll have to adjust the way we serve our clients, and it is likely that will mean less physical space.” By market share, PNC Bank is the largest bank in Kentucky. These trends could accelerate the ongoing decline of commercial banks, and pose wider economic development challenges for the state’s rural communities.

Indeed, as noted by the Economic Innovation Group in its report, From Great Recession to Great Reshuffling: Charting a Decade of Change Across American Communities, there have been “deeply divergent experiences of the recovery.” Overall, they have observed that “urban areas are ascendant, rural areas are in flux, and suburbs retain their out-sized claim on the map of U.S. prosperity.” These trends are on full display in Kentucky. Creating abundant high-paying jobs in Kentucky’s rural areas has been, and continues to be, a challenge for policymakers, economic development professionals, and civic leaders.
EMPLOYMENT-POPULATION RATIO & THE PANDEMIC

The adverse and wide-ranging impact of the pandemic on the U.S. employment-population ratio is illustrated in this county-level map. This ratio is the proportion of the civilian non-institutional population, 16 years old and older, who are employed. According to the U.S. Department of Labor, Bureau of Labor Statistics (BLS), some believe the employment-population ratio is a better indicator of economic activity and economic performance than the more frequently referenced unemployment rate. Nationally, the number of employed Americans decreased by 10.2 million from August 2019 to August 2020—moving the employment-population ratio from 59.8 percent to 55.9 percent; this represents a 6.5 percent decline in the ratio. The employment-population ratio declined in every state, but Massachusetts experienced the largest decline—15.3 percent. Kentucky’s ratio decreased by 6.5 percent (i.e., from 55.5% to 51.9%) during this period, ranking it as the 18th largest decline. Within the state, Hopkins and Pike Counties experienced the largest declines in the employment-population ratio, a 14.5 percent decline for each county. Employment went down in every Kentucky county except one, Fleming County, where employment held steady in the range of 8,500 to 8,600.
UNABLE TO WORK DUE TO COVID

As noted in “The COVID Recession” chapter of this volume, Kentucky’s employment declined by a total of 325,100 jobs, or 16.7 percent, from January to April because of the pandemic. These job losses surpassed those experienced during the Great Recession, and were compressed into a much shorter time period. A recent U.S. Census survey sheds additional light. It shows whether a respondent, age 16 or older, was unable to work during the previous four weeks because their employer closed or lost business due to the COVID-19 pandemic. This variable is part of a battery of five supplemental questions added to the Current Population Survey (CPS) basic monthly survey in May of 2020 to measure the impact of the COVID-19 pandemic on the labor force; we use the CPS-IPUMS variable COVIDUNAW to estimate the responses below, which cover the period from May to October. During this six month period, 9.7 percent of Kentuckians said they were unable to work because of the pandemic. Overall, Hawaii had the highest percentage unable to work (17.4%), and Nebraska the lowest (7.5%). Importantly, the net effect of education, while holding other important factors constant (e.g., income, race, gender), reveals significant differences for Kentuckians by education. For those with a bachelor’s degree or higher, 6.2 percent were unable to work, but for those with only a high school diploma we estimate 10.5 percent.

Unable to Work Due to COVID-19 Pandemic
Kentucky, Competitor States & the U.S.
(percentage of individuals 16 years and older, May to October 2020)

Unable to Look for Work due to COVID-19 Pandemic

There have been numerous social distancing restrictions implemented across the country that are designed to stymie the spread of the virus. While needed from a public health perspective, these efforts have simultaneously created obstacles for those looking for work during the pandemic. A recent U.S. Census survey included a question that is designed to provide a deeper understanding of these obstacles. This item reports whether the COVID-19 pandemic prevented individuals, age 16 or older, who were not in the labor force from looking for work during the past four weeks. This variable is part of a battery of five supplemental questions added to the Current Population Survey (CPS) basic monthly survey in May of 2020 to measure the impact of the COVID-19 pandemic on the labor force; we use the CPS-IPUMS variable COVIDLOOK to estimate the responses below, which cover the period from May to October. An estimated 4.5 percent of Kentuckians reported that they were unable to look for work due to the pandemic, a statistically significant lower percentage than the U.S. overall (6.1%). New York had the highest percentage (9.6%) and Alabama the lowest (2.8%). Notably, DC residents, at 13.3 percent, were even higher than those in New York. In all, 31 states were statistically no different from Kentucky, 16 states and the District of Columbia were statistically significantly higher, and 3 states were lower.

Unable to Look for Work Due to COVID-19 Pandemic
Kentucky, Competitor States & the U.S.
(percentage of individuals 16 years and older, May to October 2020)

Social distancing policies, such as school closures and self-quarantine measures, were used during the 2014 Ebola outbreak and the 2009 H1N1 influenza (flu) pandemic to thwart the spread of disease. The efficacy of this approach, however, is largely determined by the extent to which individuals adhere to it. The Centers for Disease Control and Prevention (CDC) estimates that almost 18 of the 26 million H1N1 infected workers in the fall of 2009 took days off from work, but the remaining 8 million workers did not and likely infected another 7 million co-workers. The ability to work remotely can facilitate adherence to social distancing requirements with minimal financial pain for workers. This question from a recent U.S. Census survey reports whether the respondent teleworked or worked from home for pay at any time during the previous four weeks due to the COVID-19 pandemic. This variable is part of a battery of five supplemental questions added to the Current Population Survey (CPS) basic monthly survey in May of 2020 to measure the impact of the COVID-19 pandemic on the labor force; we use the CPS-IPUMS variable COVIDTELEW to estimate the responses below, which cover the period from May to October. An estimated 18.8 percent of Kentuckians worked remotely for pay during the pandemic. At 41.5 percent, Maryland has the highest value (DC is 68.7%), and Mississippi the lowest (12.8%).

Paid for Hours not Worked due to COVID-19

As described on the facing page, the success of social distancing policies is affected by the extent to which individuals adhere to these measures. And importantly, reducing the financial pain of these measures can facilitate increased adherence. This question from a recent U.S. Census survey reports whether the respondent, age 16 or older, was paid for hours that they were unable to work during the previous four weeks as a result of their employer’s closure or loss of business due to the COVID-19 pandemic. This variable is part of a battery of five supplemental questions added to the Current Population Survey (CPS) basic monthly survey in May of 2020 to measure the impact of the COVID-19 pandemic on the labor force; we use the CPS-IPUMS variable COVIDPAID to estimate the responses below, which cover the period from May to October. An estimated 17.3 percent of Kentuckians were paid for hours not worked due to the COVID-19 pandemic. South Dakota has the highest value (27.3%), and Nevada the lowest (9.4%). Statistically, Kentucky’s 17.3 percent is no different from the U.S. percentage of 14.2. There are only two states with statistically significant higher percentages, South Dakota and Mississippi (24.0%). Overall, 38 states and the District of Columbia are the same as Kentucky, while 9 states are lower.

While the bar chart on hourly wages in the Economic Security Section examines the change in *median* hourly wages, this line chart shows the percentage change in real *average* hourly wages from 1979 to 2019 in Kentucky, the competitor states, and the U.S. The average real hourly wage in Kentucky, compared to 1979, has been lower or unchanged for most of this time period except for the last few years when average real hourly wage growth moved up to 8.7 percent; real wages reflect changes after inflation has been taken into account. Kentucky’s real increase of 8.7 percent is lower than the increases experienced by the competitor states and the U.S., which show 14.9 and 15.0 percentage increases, respectively. A major reason for Kentucky’s slower real hourly wage growth is the state’s lower average educational attainment rates. Continuing to invest in the state’s human capital, which will help to attract, retain, and create more high-paying jobs, will ensure that wages in Kentucky are more in line with those from competitor states and the U.S. overall.

Cumulative Change in Average Real Hourly Wages, 1979 to 2019, Kentucky, Competitor States and the U.S.

In the 18-month period from December 2007 to June 2009—the peak of the last economic expansion to the trough of the Great Recession—Kentucky lost over 103,000 (seasonally adjusted) private sector jobs or about 6.7 percent of its total private employment. By comparison, the U.S. private employment total was down 6.5 percent and the competitor states lost 7.4 percent. This was not, however, the low point for job losses. Kentucky, along with the rest of the nation, continued to shed jobs for another 8 months and finally reached the low point in February 2010. By this time, the state had lost 120,900 jobs, down 7.8 percent, compared to 8.5 percent in the competitor states and 7.6 percent nationally. Digging out of the Great Recession was slow, taking nearly seven years until November 2014 to reach the same level of employment it had in December 2007. It remains to be seen how long it will take to dig out of the COVID Recession. As one can see by the chart below, the depths of job losses is far greater now compared to the trough of the Great Recession. In February 2020, Kentucky’s private sector employment (seasonally adjusted) was 1,635,400. Two months later, in April 2020, it bottomed out at 1,325,900, experiencing a loss of 309,500 jobs.

![Job Growth Chart](chart.png)

Source: U.S. Department of Labor, Bureau of Labor Statistics, Employment, Hours, and Earnings from the Current Employment Statistics survey, total number of private employees, seasonally adjusted
Wage & Salary Growth by State

Private sector growth of total wages and salaries in a state over time is indicative of its economic energy. Here we look at the growth between the peak of the last economic expansion, which was during the fourth quarter of 2007, and the fourth quarter of 2019; this is, of course, prior to the onset of the COVID-19 pandemic. By the final quarter of 2019, total wages and salaries in the U.S. were about 46.4 percent higher compared to the peak of the last economic expansion. In our region of the country, Tennessee, Georgia, North Carolina, and South Carolina increased at a pace similar to the U.S. Meanwhile, wage and salary growth was slightly lower in Kentucky, evidenced by the state’s 40.8 percent growth. Overall, the competitor state average is slightly lower at 38.7 percent. On the national level, North Dakota has the highest wage and salary growth during this period—registering an enviable 100.8 percent increase—and Wyoming has the lowest rate with a 19.6 percent increase.

Wage and Salary Growth, Peak of the Last Economic Expansion to 2019 (Q4), Kentucky, Competitor States & the U.S.

Source: Author’s calculations using data from the Bureau of Labor Statistics, Quarterly Census of Employment and Wages (private, all industries, all sizes). The U.S. estimate is constructed from state data.

Note: CS is a weighted average of the competitor states.
Wage & Salary Change during COVID

While the figure on the facing page shows the aggregate wage and salary growth for the twelve year period between 2007 and 2019, the figure below shows its decline during the COVID-19 pandemic. From the final quarter in 2019 to the second quarter of 2020—the first six months of the year—total wages and salaries declined in Kentucky by 14.9 percent, compared to declines of 14.5 and 13.5 for the U.S. and competitor states, respectively. The largest decline occurred in Hawaii (-23.3%), while Washington had the smallest drop (-7.5%).

![Wage and Salary Change, 2019 (Q4) to 2020 (Q2), Kentucky, Competitor States & the U.S.](image)

Source: Author’s calculations using data from the Bureau of Labor Statistics, Quarterly Census of Employment and Wages (private, all industries, all sizes). The U.S. estimate is constructed from state data.

Note: CS is a weighted average of the competitor states
EMPLOYMENT GROWTH BY STATE

The private sector growth rate of *total* employment is indicative of a state’s economic energy. Here we look at the growth rate between the peak of the last economic expansion, which was during the fourth quarter of 2007, and the fourth quarter of 2019. The U.S. average is 11.1 percent growth during this period, which shows how the economy performed before the pandemic. While not among the top states in the region (i.e., NC, TN, GA, & SC), Kentucky still outperformed many of its competitors in employment growth with a 7.3 percent increase (the same as the competitor state average). Kentucky has the 25th highest employment growth rate among the 50 states and DC over this twelve-year period. Utah has the highest total employment growth, experiencing a 25.7 percent increase. West Virginia, on the other hand, experienced a 3.6 percent *decrease* in total employment, the largest decline among the states.

Employment Growth, Peak of the Last Economic Expansion to 2019 (Q4), Kentucky, Competitor States & the U.S.

![Employment Growth Chart](chart-url)

*Source: Author’s calculations using data from the Bureau of Labor Statistics, Quarterly Census of Employment and Wages (private, all industries, all sizes). The U.S. estimate is constructed from state data.

Note: CS is a weighted average of the competitor states
EMPLOYMENT CHANGE DURING COVID

While most states experienced an increase in total private sector employment during the twelve year period between 2007 and 2019, all states experienced a decline during the COVID-19 pandemic. From the final quarter in 2019 to the second quarter of 2020—the first six months of the year—total private sector employment declined in Kentucky by 14.1 percent, compared to declines of 13.8 and 12.2 for the U.S. and competitor states, respectively. The largest decline occurred in Hawaii (-25.7%), while Idaho had the smallest drop (-6.1%).

Source: Author’s calculations using data from the Bureau of Labor Statistics, Quarterly Census of Employment and Wages (private, all industries, all sizes). The U.S. estimate is constructed from state data. Note: CS is a weighted average of the competitor states.
WAGE & SALARY GROWTH BY KENTUCKY REGION

The growth rate of total wages and salaries for Kentucky and its regions from the peak of the last economic expansion to the fourth quarter of 2019 is shown below (i.e., 2007Q4 to 2019Q4). This is, of course, prior to the onset of the COVID-19 pandemic. One of Kentucky’s regions—the Urban Triangle—experienced a growth rate above the U.S. average of 46.4 percent (a county-level map of these four regions is available in the glossary). Wages and salaries increased by 48.6 percent in the Urban Triangle, the state’s primary economic engine, with the South Central region not far behind at 40.8 percent. Eastern Kentucky trails far behind the rest of the state at 8.4 percent.

![Wage and Salary Growth in Kentucky Regions, Peak of the Last Economic Expansion to 2019 (Q4)](image)

Source: Author’s calculations using data from the Bureau of Labor Statistics, Quarterly Census of Employment and Wages (private, all industries, all sizes). See glossary for map of Kentucky regions by county.
Wage & Salary Change by Kentucky Region

Kentucky has experienced an across-the-board decline, across all regions of the state, in aggregate private sector wages and salaries during the COVID-19 pandemic. From the final quarter in 2019 to the second quarter of 2020—the first six months of the year—total wages and salaries declined in Kentucky by 14.9 percent, with the largest drop experienced in South Central Kentucky (-17.5%). The Urban Triangle is not far behind with a 15.5 percent drop, followed by Western Kentucky (-13.5%) and Eastern Kentucky (-11.3%).

Source: Author’s calculations using data from the Bureau of Labor Statistics, Quarterly Census of Employment and Wages (private, all industries, all sizes). See glossary for map of Kentucky regions by county.
EMPLOYMENT GROWTH BY KENTUCKY REGION

The growth rate of total employment for Kentucky and its regions from the peak of the last economic expansion to the fourth quarter of 2019 is shown below (a county-level map of these four regions is available in the glossary). Kentucky’s Urban Triangle experienced a 12.9 percent increase in total employment, which exceeds the U.S. average of 11.1 percent. The other regions in the state grew more slowly, as evidenced by the 1.0 percent increase in Western Kentucky and 6.2 percent increase in South Central Kentucky. In Eastern Kentucky employment is over 10 percent lower—a significant decline over the twelve-year period that reflects the declining fortunes of the coal industry.

![Employment Growth in Kentucky Regions](image)

Source: Author’s calculations using data from the Bureau of Labor Statistics, Quarterly Census of Employment and Wages (private, all industries, all sizes). See glossary for map of Kentucky regions by county.
EMPLOYMENT CHANGE BY KENTUCKY REGION

The drop in employment in Kentucky mirrors the drop in wages and salaries. All regions of the state have experienced substantial decreases in total employment during the COVID-19 pandemic. From the final quarter in 2019 to the second quarter of 2020—the first six months of the year—total private sector employment declined in Kentucky by 14.1 percent, with the largest drop experienced in South Central Kentucky (-15.2%). The Urban Triangle is not far behind with a 14.6 percent drop, followed by Western Kentucky (-13.0%) and Eastern Kentucky (-11.7%).

Source: Author’s calculations using data from the Bureau of Labor Statistics, Quarterly Census of Employment and Wages (private, all industries, all sizes). See glossary for map of Kentucky regions by county.
PER CAPITA PERSONAL INCOME

While Kentucky’s per capita personal income has grown significantly over the years, its position relative to the nation has not demonstrably improved since around 1974. Indeed, Kentucky’s per capita income has oscillated around 80 percent of the national average since the mid-1970s. In 2019 it was just under 78 percent of the U.S. average while the average of the competitor states was around 89 percent. Lagging growth in per capita income has kept Kentucky ranked in the bottom tier of states (i.e., 47th in 2019). Within Kentucky, there are marked differences between urban, somewhat rural, and mostly rural counties—as reflected in their respective 2019 per capita income levels of approximately $48,998, $38,313, and $34,510.
At about $55,000, median household income in Kentucky is 84 percent of the U.S. median; at 93 percent of the U.S. median, the competitor states median is higher than Kentucky. The median level is the point at which half the households are lower, and half are higher. In real dollars, Kentucky’s median household income is as high as it has been since the period from the late 1990s to the early-to-mid 2000s; real dollars factor out inflation and are expressed as constant dollars. Researchers at MIT estimate that, in Kentucky, two working parents with one child need to earn about $53,700 a year for a living wage. This assumes both parents work full-time, 2,080 hours per year, and each earn $12.91 per hour. About half of the households in Kentucky do not generate sufficient income to meet minimum standards given the state’s average cost of living. The U.S. Census Bureau estimates that the average family size in Kentucky is 3.1 people. And, according to the Census Bureau’s American Community Survey estimates, about 832,400 Kentucky households made less than $50,000 in 2019, which is 47.6 percent of the households.

NET EARNINGS PER CAPITA

Because net earnings is the portion of personal income that does not include transfer payments from various social assistance or public welfare programs or income from dividends, interest, or rent, it is a good indicator of the underlying economic vitality of a state, county, or region. Kentucky’s net earnings per capita relative to the U.S. average increased steadily from 1929 to 1977; it hit its high point of 82.5 percent in 1977. Since 1977, Kentucky’s net earnings per capita relative to the U.S. has dropped and is currently at 72.7 percent. This places Kentucky at 47th compared to other states and DC, and is its lowest percentage since 1961 (approximately 72 percent). Kentucky’s current net earnings per capita is $25,850, significantly below the highest state, Connecticut ($50,000) and above the lowest state, Mississippi ($22,360). The District of Columbia (DC) has net earnings even higher than Connecticut, at $58,370.

Net Earnings Per Capita by County

When President Johnson’s War on Poverty was gathering steam in late 1960s, 33 of Kentucky’s 120 counties had per capita net earnings placing them in the bottom ten percent of the 3,000-plus counties in the United States. As we note on the previous page, net earnings is the portion of personal income that does not include transfer payments from various social assistance or public welfare programs or income from dividends, interest, or rent, and therefore is a good indicator of the underlying economic vitality of a region. By 2019—50 years later—27 of these counties, or 82%, were still in the bottom ten percent. Nearly two-thirds of the counties nationally (62%) and in the dozen nearby competitor states (59%) that were in the bottom ten percent in 1969 were still there in 2019. While most of these persistently poor counties are in Eastern Kentucky, the map shows several counties in the south central part of the state. An important public policy question is why the percentage of persistently poor counties is so much higher in Kentucky, especially compared to the competitor states.

Kentucky Counties by Net Earnings Per Capita
(Bottom 10 Percent Nationally, 1969 and 2019)

Source: Estimated by the author using data from the Bureau of Economic Analysis
Note: Net earnings is calculated by subtracting current transfers, dividends, interest, and rent from personal income and dividing by the total population.
EMPLOYMENT-POPULATION RATIO

This ratio is the proportion of the civilian non-institutional population that is employed. According to the U.S. Department of Labor, Bureau of Labor Statistics (BLS), some believe the employment-population ratio is a better indicator of economic activity and economic performance than the more frequently referenced unemployment rate. Here, we focus on the prime working-age population, which includes those individuals between 25 to 54 years old. In 2019, Kentucky had one of the lowest employment-population ratios in the country at 77 percent. In fact, only three states had a ratio that is statistically significantly lower (i.e., Mississippi, New Mexico, & West Virginia); there are nine states statistically the same as Kentucky while the remaining 38 states and DC are statistically higher. In 1976, Kentucky and the United States had nearly identical employment-population ratios for this age group at about 70 percent. Since that time, as evidenced in the figure below, both the competitor states and the U.S. have employment-population ratios consistently higher than Kentucky. Key factors necessary for increasing the economic growth rate, both in Kentucky as well as in the U.S. overall, are to draw more individuals into the labor force (i.e., increasing the employment-population ratio) and maximizing their overall productivity.

EMPLOYMENT-POPULATION RATIO

Only two competitor states—Mississippi and West Virginia—have (statistically significant) lower employment-population ratio than Kentucky among the prime working-age adults (25 to 54 years old). Alabama, Georgia, and South Carolina are statistically no different from Kentucky, while the balance of the competitor states are statistically higher—as are the competitor state and U.S. averages. Mississippi has the lowest employment-population ratio for prime working-age adults in the U.S. (73.3%) while New Hampshire has the highest (86.6%). A key for Kentucky’s future economic growth is to identify and successfully implement programs that increase the employment-population ratio, particularly for prime working-age adults. These strategies include, but are not limited to, increasing the transition from high school to post-secondary education, improving the skills of non college-educated workers, and addressing the substance abuse problem.

![Employment Population Ratio, 2019, Kentucky, Competitor States & the U.S.](image-url)

(percentage of prime working-age adults, 25 to 54 years old)

The labor force participation rate is the proportion of the civilian noninstitutional population that is in the labor force, which is slightly different from the employment-population ratio described on the previous page. The labor force is comprised of individuals who are employed as well as individuals who are unemployed but searching for a job. The national labor force participation rate increased from around 60 percent in 1970 to about 67 percent in 2000, driven in large part by the increased participation of women. In 2019, the U.S. labor force participation rate for individuals 16 and older was 63.6 percent and Kentucky’s was 59 percent. Kentucky’s labor force participation rate for those 20 to 24 looks very similar to both the competitor states and the U.S. However, the labor force participation rate for Kentuckians 25 to 54—the prime working years—is 77.9 percent compared to 82.8 percent for the United States. And, in the 55 to 64 age group, Kentucky is significantly lower, as evidenced in the chart below.

 Labor Force Participation by Various Age Groups, Kentucky, Competitor States, and the U.S., 2019
(percent of individuals in the labor force)

Source: 2019 American Community Survey 1-Year Estimate
LABOR FORCE PARTICIPATION BY COUNTY

There are 13 Kentucky counties with a labor force participation rate among prime working-age adults (25 to 54 years old) that is equal to or greater than the U.S. average (86.6%). On the other hand, there are six counties with a labor force participation rate below 50 percent: Martin, Elliott, Clay, Morgan, McCreary, and Wolfe. Most of the counties in the urban triangle have labor force participation rates that are at least as high as the Kentucky average (77.3%), with several that are above the U.S. average. A critical factor that will determine the state’s future economic growth is to identify and successfully implement programs that increase the labor force participation rate, particularly for prime working-age adults. These strategies include, but are not limited to, increasing the transition from high school to post-secondary education, improving the skills of non-college educated workers, and addressing the substance abuse problem. Research published in 2017 by Princeton University economist Alan Krueger found that from 1999 to 2015 up to 20 percent of the national drop in the labor force participation rate among prime working-age men and 25 percent of the drop among women might be due to the use and abuse of opioids. Dr. Krueger is quoted in the Wall Street Journal as saying “The opioid epidemic and labor-force participation are now intertwined.”

Source: American Community Survey, 2018 5-Year Estimate, Table S2301
EMPLOYMENT BY FOREIGN COMPANIES

Foreign companies create important economic benefits for the American economy. These companies invest billions of dollars in the U.S. economy and create hundreds of thousands of jobs. Kentucky has worked hard to capitalize on the opportunities presented by globalization—reflected by the presence in the state of more than 400 international companies from nearly 30 countries. A majority-owned U.S. affiliate is an American business enterprise in which there is a foreign direct investment that accounts for at least 50 percent of the ownership. In Kentucky there are an estimated 139,000 individuals employed by majority-owned U.S. affiliates. As a percentage of total full- and part-time wage and salary employment, it is 6.9 percent in Kentucky. This is higher than the U.S. average of 4.8 percent as well as the competitor state average of 5.4 percent.

Employment of Majority-Owned U.S. Affiliates, 2017, Kentucky, Competitor States, & the U.S.

(percentage of total full- & part-time wage and salary employment)

Source: Author’s calculations using data from the Bureau of Economic Analysis, Regional Economic Accounts & International Data.

Note: CS is a weighted average of the competitor states.
Exports

Exports are a vital piece to the state’s economic prosperity. Kentucky’s exports of goods have more than doubled in real dollars over the last two decades. From 1999 to 2019 the compound annual growth rate of Kentucky’s exports is 6.8 percent; this is higher than the U.S. and competitor states. The value of Kentucky’s exports of goods in 2019 was $33 billion, which is equivalent to 15.3 percent of Kentucky’s gross domestic product; it is roughly have this percentage for the competitor states and the U.S. In 2019, most of Kentucky’s exported goods go to Canada, which accounted for 24 percent of the total. The United Kingdom and France each account for about 11 percent, followed by Brazil (8%), Mexico (6.7%), and China (6.4%). Kentucky’s businesses exported to nearly 190 different countries in 2019, but the top six and top ten countries received 66 percent and 79 percent, respectively, of the total value. Some traditional Kentucky products, like “beverages & tobacco products,” which includes distilled products like bourbon, accounted for $584 million in exports, or 1.8 percent of the total. However, over half (58%) of the value of exported goods is accounted for by transportation equipment (e.g., aerospace and motor vehicle industries), followed by chemicals (14%), computer and electronic products (6%), and machinery-except electrical (5%).

Kentucky Exports of Goods, 1999-2019
(constant 2019 billions)

Source: Office of Trade and Industry Information (OTII), Manufacturing and Services, International Trade Administration, U.S. Department of Commerce.
A housing start is when a new foundation is laid. Because housing starts represent the first step in a series of cascading future purchases, such as furniture, appliances, and landscaping, a housing start is considered a leading economic indicator and a foundation of determining future economic trends. Going back to 1980, Kentucky’s housing starts peaked in 2004 with 22,623 and declined steadily until hitting its nadir of about 7,400 in 2009. Following the U.S. and competitor state trend, Kentucky housing starts have stabilized since then and increased to nearly 13,830 in 2018. The overall trends nationally have seen relatively strong gains in multifamily housing, such as apartment buildings, and somewhat lackluster growth in single-family homes, which is a much bigger driver of economic growth. In Kentucky, single family homes accounted for about 7,500 of the new starts in 2019, or about 63 percent of the total market. The Wall Street Journal reported in a May 2018 article, entitled “Rural America Has Jobs. Now It Just Needs Housing,” that a lack of housing across rural America has become an obstacle for economic development and growth. Increasingly, new housing is being built in urban areas, not rural regions. And rural areas face new difficulties recruiting new industry and keeping younger workers because of insufficient housing stock.

![Number of New Residential Housing Units, Kentucky, Competitor States, and the U.S., 1980 to 2019](chart)

Source: U.S. Census Bureau
Foreclosures

Leading up to the Great Recession, the federal government and the private sector undertook extensive efforts to increase the number of homeowners by keeping mortgage rates low and by allowing small, or nonexistent, down payments. By the fourth quarter of 2007—the peak of the last economic expansion—the homeownership rate was 69 percent nationally and 75 percent in Kentucky. It became clear, however, that many of these new homeowners could not afford their homes, as evidenced in the figure below by a sharp increase in foreclosures beginning in 2008. In Kentucky, the percentage of mortgage loans in foreclosure peaked in the fourth quarter of 2011 at 4 percent. The foreclosure rate has declined since then and currently stands at 0.75 percent; the national rate is 0.59 percent. Kentucky’s 0.75 percent is its lowest foreclosure rate since 1998. By the third quarter of 2020, the homeownership rate was 73.9 percent in Kentucky and 67.4 percent nationally.

Mortgage Foreclosure Inventory, Kentucky and the U.S., 1979 (Q1) to 2020 (Q3)
(foreclosures as a % of all mortgages, not seasonally adjusted)

Source: Mortgage Bankers Association
COMMUNITY BANKS

Community banks—financial institutions with assets less than $10 billion—are fundamentally important for the economic vibrancy of many regions. According to a Council of Economic Advisors Issue Brief in August 2016, community banks provide “the only local source of brick-and-mortar traditional banking services for many counties, as well as key sources of credit for rural communities and small business loans.” Indeed, as Esther George, the President and CEO of the Federal Reserve Bank of Kansas City wrote in 2017, “traditional banks are essential to thousands of communities across the country.” Moreover, the leaders of these banks are integral members of their communities. As President George notes, “these bankers serve on the boards of local schools, hospitals and other civic organizations, providing a key source of leadership in the community.” However, the number of community banks has been declining for many years. There were, for example, 402 community banks in Kentucky at the beginning of 1984, but only 128 by mid-2020—a 68 percent decline. As the figure below illustrates, there has been a similar downward trend in the competitor states and the U.S. overall. While the market forces affecting banking are felt in all regions, analyses by the Federal Reserve Board show that, at least since 2005, the nation’s rural areas and small towns have been disproportionately affected.

Community Banks
in Kentucky, Competitor States, & the U.S.
(% change in number of community banks, 1984 to 2020)

Source: Author’s analysis of FDIC Community Banks Study Reference Data
COMMUNITY BANKS BY KENTUCKY REGION

Citing the Federal Reserve Board banking data, the *Wall Street Journal* reported in 2017 that since the Great Recession small bank loans of less than $1 million, once adjusted for inflation, have not recovered in the nation’s rural areas. At the same time, however, from 2010 to 2016, loans in large metropolitan areas, their suburbs, and medium-to-small metropolitan areas rebounded to pre-recession levels. Across Kentucky’s regions, there has been a significant decrease in the number of community banks from 1984 to 2020. Our analysis of FDIC Community Banking Study Reference Data reveals that the number of community banks with a *commercial and industrial loan specialty* (e.g., business loans) declined from 23 banks in the fourth quarter of 1984 to only two banks by the second quarter of 2020. Total outstanding loans (e.g., mortgages, commercial real estate, commercial and industrial, etc.) by these 23 banks at the end of 1984 totaled $9 billion (in inflation adjusted 2019 dollars), compared to $127 million in total outstanding loans by the two banks specializing in commercial and industrial loans at the midpoint of 2020. Community banks that do not specialize in commercial and industrial loans still make business loans, but the precipitous decline in the number of community banks specializing in business loans, as well as the decline in total outstanding loans, is indicative of the challenges facing rural businesses.

![Community Banks in Kentucky, by Region](image)

Source: Author’s analysis of FDIC Community Banks Study Reference Data
Earnings Gap

Creating abundant high-paying jobs in Kentucky’s rural areas has been and continues to be a challenge for policymakers, economic development professionals, and civic leaders. This figure illustrates the gap in wages between workers in Kentucky’s metro counties and those in “somewhat rural” or “mostly rural” counties. Going back to 1969, earnings in metro areas have been consistently higher than those in rural counties—especially when compared to Kentucky’s 60 “mostly rural” counties. In 2019, for example, earnings in metro counties were about 26 percent higher than those in “somewhat rural” counties and about 42 percent higher than wages in “mostly rural” counties. While the current urban-rural earnings difference is notable, the growing gap over the last three and a half decades is perhaps more significant. The earnings differential between the 35 metro counties and 85 rural counties increased steadily from the late 1970s to the present—suggesting new approaches to rural community and economic development are needed. Based on numerous studies of rural communities across the country, economists have outlined approaches for rural America to improve rural prosperity by thinking and acting regionally, finding new economic niches in high-value knowledge industries that leverage a region’s strengths, and placing a premium on homegrown entrepreneurs.

Kentucky’s Urban-Rural Earnings Gap, 1969-2019
(average geographically based per job earnings ratio)

Source: Bureau of Economic Analysis, CAINC30, Economic Profile
Note: Author estimate by taking ratio between Urban-Rural Continuum Codes 9-8-7 (mostly rural), 6-5-4 (somewhat rural), and 3-2-1 (metro).
Economic Security

The coronavirus pandemic has shaken the foundation of economic security for many Americans, as evidenced by the unprecedented spike in the number of jobless claims beginning in March of 2020 (see page 76). These job losses had wide ranging implications such as widening the racial employment gap; reducing families’ ability to pay for housing; increasing reliance on social programs; intensifying food insecurity; and reducing child-care options for working parents.

The pandemic’s wrath has not been uniformly distributed, nor have its economic consequences. Racial and ethnic minorities, lower-income households, individuals whose jobs are dependent upon face-to-face interaction, workers and students without adequate broadband service, and the elderly have been disproportionately impacted. Indeed, government surveys, such as the U.S. Census Household Pulse Survey, have provided important insights on the range of ways in which people’s lives have been impacted by the pandemic. These included, of course, the loss of a job or reduction of hours worked, as well as increased difficulty of paying the monthly rent or mortgage payment, buying food, and simply paying one’s normal bills and expenses.

In many ways, the pandemic has exacerbated existing trends that threaten economic security. The bounty of the economic expansion since the Great Recession was not distributed evenly across industries, geographies, and individuals. Many found themselves on

continued on the next page
the wrong side of globalization, mechanization, and technological change—as well as having first-hand experience with numerous other social and economic factors like low-performing schools, the disintegration of the nuclear family, and the community distress wrought by substance abuse.

The four tickets to the middle class—higher education, good health care, a house, and a retirement nest egg—are increasingly beyond the financial reach of too many Americans. In this report, we present our analysis of how middle-class families have become less economically secure. For at least 40 years, household income levels have changed at uneven rates depending upon whether one is “rich,” “poor,” or somewhere in-between. For Kentucky families, incomes at the 25th percentile—what some might consider “lower middle class”—declined 2.4 percent in real dollars. By comparison, incomes at the 75th percentile, or “upper middle class,” increased for Kentucky and the U.S. by around 20.7 and 28.7 percent, respectively, in real dollars, from the late 1970s to the late-2010s.

A series of reports, studies, and books released over the last few years have focused on the plight of the working class. The Economic Report of the President, for example, points out that the share of pretax income going to the top 1 percent increased from 8 percent to 18 percent from 1975 to 2014. Toward the end of 2015, the Pew Research Center released a report entitled The American Middle Class is Losing Ground. They present statistics showing how the size of the American middle class has been slowly contracting since the early 1970s. For example, 61 percent of American adults lived in middle-income households in 1971, but this has steadily decreased since then and is estimated to be 50 percent in 2015. The Census Bureau estimates that in 2019 the “richest” 20 percent of households had 52 percent of the income—more than in 1967 when the upper 20 percent of Americans had 43.6 percent of the income.

Many individuals still do not feel economically secure a decade after the Great Recession ended, and the COVID-19 pandemic and resulting recession has exacerbated conditions for many individuals and families. In addition to uneven income growth, the poverty rate, as well as public assistance program participation, is higher in Kentucky than in many of the competitor states, evidence of continued economic uncertainty for many. The growth rate in wages, salaries, and employment, and therefore economic security, is not uniform across the state. The best antidote to decreasing or stagnant wages and income is the pursuit of education.
Distressed Community Index

Kentucky reflects the broad national trends identified by the Economic Innovation Group in its assessment of economic changes occurring in the wake of the Great Recession. Their insights include the following: population and prosperity have become more intertwined; community distress is more common in rural areas; fewer than a quarter of the counties nationally have recovered from the business closures of the Great Recession; prosperity is increasingly focused in urban areas; prosperous communities tend to be more racially and ethnically diverse; and prosperous areas tend to have higher levels of educational attainment. The Distressed Communities Index (DCI) was developed by the Economic Innovation Group as a tool for measuring the vitality of U.S. communities. Each county in the United States is assessed using seven factors: high school diploma attainment; housing vacancy rate; adults not working; poverty rate; median income; change in employment from 2011 to 2015; and the change in business establishments over the same time period. As the map below illustrates, counties with less diversity, lower education levels, higher poverty rates, and fewer economic opportunities are more likely to be categorized as “distressed” by this Index. These counties are concentrated in the state’s rural areas, particularly in Eastern Kentucky, while the Urban Triangle tends to be more prosperous.

Source: Distressed Communities Index (DCI), Economic Innovation Group, www.eig.org
The COVID-19 pandemic has shaken the foundation of economic security for many Americans, as evidenced by the unprecedented spike in the number of jobless claims beginning in March of 2020. The chart below shows initial jobless claims in Kentucky, from February 2007 (just before the onset of the Great Recession) to November 2020. The gray areas in the chart mark the dates for economic recessions. As one can see, the spike in jobless claims during the COVID pandemic overshadows the increase during the Great Recession. From late March 2020 to late April 2020, over 100,000 Kentuckians, on average, were filing for unemployment benefits each week. While many have gone back to work, a great number are still without a job. In October 2020, Kentucky’s unemployment rate was 7.4 percent; while significantly down from its high of 16.6 percent in April 2020, it is still much higher than the month prior to the pandemic (e.g., 4.2% in February 2020). Much of the data on public assistance programs that we show in this section do not include the time period during the pandemic, but we provide these data nonetheless for context. The economic dislocation caused by the pandemic, as suggested by the pattern of initial jobless claims, is placing extreme stress on household and government budgets—affecting both the revenue and expenditure sides of the ledger.

Initial Jobless Claims in Kentucky
(February 2007 to November 2020)

Transfer payments are benefits transferred from local, state, or federal governments to an individual. These payments include, but are not limited to, retirement and disability insurance benefits like Social Security, medical benefits such as those provided through Medicaid and Medicare, income maintenance benefits like TANF and SNAP, unemployment insurance compensation, and veterans’ benefits. Transfer payments account for about 17 percent of total personal income for the U.S. (24 percent for Kentucky statewide)—but several Kentucky counties are significantly higher than the national and state averages. There are thirteen Kentucky counties over 50 percent, and 16 counties where transfer payments are between 40 and 49 percent of personal income; there are 68 counties between 25 percent and 40 percent. The percentages for Kentucky’s metro, slightly rural, and mostly rural counties are, respectively, 19, 29, and 39. By comparison, the percentages for metro, slightly rural, and mostly rural counties nationally are, respectively, 16, 25, and 26. There are several counties that are heavily dependent on transfer payments as a source of personal income, with the highest percentages concentrated in Eastern Kentucky.

Transfer Payments by County, 2019
(as a percentage of total personal income)

Source: Bureau of Economic Analysis
The Gini Index is a measure of income dispersion. A higher number indicates more concentration of income in fewer hands, with a value of “1” indicating that one person holds all the income. The Gini index for the United States in 2019 (0.481) is slightly lower than a year earlier (0.485). The Census Bureau estimated that in 2019 the “richest” 20 percent of households had 52 percent of the income—more than in 1967 when the upper 20 percent of Americans had 43.6 percent of the income. The focus on the income distribution has been an important part of the political discourse for at least the last few decades, and it arguably reached new levels of intensity among the political, economic, academic, and journalistic cognoscenti in 2013 with the publication of Thomas Piketty’s opus, *Capital in the Twenty-First Century*. These debates have focused on the extent of income inequality, and what, if anything, should be done to address it. The map below shows that Kentucky, with a Gini Index value of (.476), has a higher Gini Index (more inequality) than 26 states, and is lower than 4 states and DC; it is statistically the same as 19 states. The two highest Gini Index values belong to DC (.512) and New York (.515); Utah has the lowest (.427).

GINI INDEX BY STATE

Source: U.S. Census Bureau, 2019 1-Year American Community Survey
GINI INDEX BY COUNTY

This map shows the Gini Index values for Kentucky counties organized into quartiles, or four equal groups. As explained on the previous page, the Gini Index is a measure of income dispersion. A higher number indicates more concentration of income in fewer hands, with a value of “1” indicating that one person holds all the income. The highest Gini Index values (i.e., higher income inequality) are concentrated in the poorest areas of Kentucky. Owsley County has the highest Gini Index value (.542) and Hancock County has the lowest (.371).

Kentucky County-Level Gini Index, 2014-2018

Source: American Community Survey, 2018 5-Year Estimate, Table B19083
Middle-class families have become less economically secure. Over the last 40 years, household income levels have changed at uneven rates depending upon whether one is “rich,” “poor,” or somewhere in-between. For Kentucky families, incomes at the 25th percentile—what some might consider “lower middle class”—declined by 2.4 percent compared to a 9.9 percent increase nationally in real dollars. By comparison, incomes at the 75th percentile, or “upper middle class,” increased for Kentucky and the U.S. by around 20.7 and 28.7 percent, respectively, in real dollars, from the late 1970s to the late 2010s. The contrast is the greatest between incomes at the 10th and 90th percentiles, with incomes declining in Kentucky by 6.3 percent at the lower income level and increasing by 45.6 percent at the upper income level; a large difference also exists between the 10th and 90th percentiles for the competitor states and the U.S. These data reflect total pre-tax personal income from all sources for all adults in the household. Noncash benefits, such as food stamps, health benefits, or subsidizing housing are not included as household income. Many factors have contributed to the widening gap, including the rise of globalization and outsourcing, increasing returns to high-level skills, job automation, declining unionization, immigration, and tax policies.

Changes in Household Income, by Income Level, 1976-78 to 2017-19, KY, Competitor States and the U.S. (based three-year averages of 2019 dollars)

Household incomes at the 25th and 75th percentiles can be viewed as boundaries around America’s middle class. In the late 1970s, upper middle class households—those at the 75th percentile—had incomes about 3 times larger than lower middle class households, which are those at the 25th percentile; this is true of Kentucky, its competitor states, and the United States overall, where the ratios were 3, 3.1, and 3.1, respectively, around 40 years ago. However, the gap has widened since then, evidenced by the ratios increasing to around 3.7 for Kentucky, its competitor states, and the U.S. by the late 2010s. The upward trending lines in the figure below are indicative of a widening income gap between those who occupy the upper and lower boundaries of the American middle class. These trends are occurring because household incomes have been increasing for the upper middle class while declining for the lower middle class (in real terms), as illustrated in the bar chart on the facing page. These household income trends suggest that, especially in Kentucky, those in the bottom half of the income distribution are facing relative economic stagnation and decline compared to those in the competitor states and the U.S.

HOURLY WAGES

The hourly wage data illustrated in the bar chart below represent a portion of the household income data presented on the preceding two pages. Household income includes, but is not limited to, earnings, interest income, dividend income, public and private pensions, unemployment compensation, public assistance cash benefits (e.g., TANF & SNAP), child support, and alimony. By limiting the focus here to hourly wages, we see a clearer picture of workers’ labor market experiences. These data include hourly earnings for workers paid by the hour (excluding overtime, tips, commissions, and bonuses), as well as the usual hourly earnings for nonhourly workers (including overtime, tips, commissions, and bonuses).

Similar to the trends in household income, Kentucky’s wage earners at the 10th, 25th, 50th, and even the 75th percentile experienced flat to declining wages, in real dollars, from 1979 to 2019. For example, if we ordered all Kentucky workers from top to bottom according to their hourly wages, took the wage earner in the middle (i.e., the median or 50th percentile), removed the inflationary effect from 1979 to 2019 to get real wages, we would discover that the wage earner had experienced a 0.6 percent decline over this time period. Wages earners in the competitor states and the U.S. realized larger increases, especially at the 75th and 90th percentiles.

Cumulative Change in Real Hourly Wages, by Wage Percentile, 1979 to 2019, Kentucky, Competitor States and the U.S.

Whether someone has a bank account can have important implications for their financial well-being. According to the Federal Deposit Insurance Corporation (FDIC), “access to an account at a federally insured institution provides households with the opportunity to conduct basic financial transactions, save for emergency and long-term security needs, and access credit on fair and affordable terms.” Moreover, it can help protect “households from theft and reduces their vulnerability to discriminatory or predatory lending practices.” Surveys done by FDIC find that low-to-moderate income Americans are less likely to “access mainstream financial products such as bank accounts and low-cost loans.” At 6.5 percent, Kentucky households are slightly more likely to be “unbanked” than the U.S. (5.4%). Nonetheless, the percentage of unbanked households in Kentucky has steadily declined, from 9 percent in 2015 and 7.2 percent in 2017, to the current estimate of 6.5 percent. Factors associated with being unbanked include, but are not limited to, lower levels of education and income, being disabled, and belonging to a minority group.

Unbanked Rates, 2019, Kentucky, Competitor States, & the U.S.

(percentage of all households)

Source: Federal Deposit Insurance Corporation, How America Banks, FDIC 2019 Survey
PERSONAL BANKRUPTCIES

Bankruptcy is defined as “a legal proceeding involving a person or business that is unable to repay outstanding debts.” The idea is to develop a plan that enables the individual (or business) to gain a fresh financial start while providing creditors with some prospect of repayment for outstanding debts. The personal bankruptcy rate provides an indication of the overall financial health of individuals and families. As consumers acquire excessive debt or economies are in recession, for example, the threat of personal bankruptcy increases. The laws governing bankruptcy changed in 2005, which had the immediate effect of reducing the number of individuals filing for bankruptcy. The personal bankruptcy rate in Kentucky has essentially been the same as the competitor states, which in 2019 is around 3.3 bankruptcies per 1,000 population. The U.S. average has been somewhat lower over the 2000-2019 period, and stood at 2.3 in 2019. Overall, the bankruptcy rate has been on a downward trend since 2010, and is approaching levels not seen since before the Great Recession. Despite the economic dislocation caused by the pandemic, the number of personal bankruptcy filings are down 28 percent in the first three quarters of 2020 compared to the first three quarters of 2019.

Source: Estimated using data from Administrative Office of the U.S. Courts & Census data, various years.
BUSINESS BANKRUPTCIES

According to the National Bureau of Economic Research (NBER), the trough of the Great Recession was in the second quarter of 2009. It is perhaps no surprise, then, that 2009 is the peak year, as shown in the graph below, for the number of businesses that filed for bankruptcy. Across the various Circuit and District Courts in 2009, there were 60,837 bankruptcy business filings (Chapters 7, 11, 12, 13)—but this has steadily declined since then with 22,780 in 2019. Surprisingly, given the stress on the economy caused by the pandemic, but business filings across the U.S. in the first three quarters of 2020 (January through September) are 2.2 percent lower than the number filed in the first three quarters of 2019. When expressed as a percentage of business establishments, Kentucky has been lower than the competitor states and the U.S. during the last few years, but has increased since 2018 and now exceeds both the competitor state and U.S. averages.

Source: Estimated from Administrative Office of the U.S. Courts data along with establishment data from the U.S. Census, County Business Patterns, various years. Note: 2019 data are estimated by using 2018 establishments and 2019 bankruptcies.
Housing in Kentucky

One of the tenants of the “American Dream” is home ownership, a built-in household savings mechanism that, in theory, provides long term security for households who build equity overtime as they pay down their mortgage balance. However, since the Great Recession and housing crisis in 2008-2009, the supply and demand for housing in Kentucky and across the nation has shifted. The overall supply of housing units has steadily increased in Kentucky from 1,911,822 in 2010 to 1,974,406 total units in 2018 (3.3% increase in units). Similarly, the stock of housing in the US increased by 4.9 percent across that same time period. Of the available units, the total number of units occupied by households in Kentucky increased from 1,676,708 in 2010 to 1,728,681 in 2018 (3.1% increase in occupied units). Looking at the number of occupied units, an interesting trend emerges regarding the number of owner versus the number of renter households. Since the housing crisis, the percentage of renters has increased, while the percentage of owners has decreased, in both Kentucky and the US. Both Kentucky and the U.S. saw a 3% increase overall in the number of units occupied by renters and a 3% decrease in the number of units occupied by owners between 2010 and 2018. This amounts to an additional 65,948 renter households in Kentucky and 13,975 fewer households that own their home in 2018.

Looking more closely at this trend across the Commonwealth, the number of renter households increased in 92 out of 120 counties from 2010 to 2018. The map below displays these changes across all Kentucky counties. Clay County had the greatest increase in renters (76.6%), moving from 1,387 renter households in 2010 to 2,450 in 2018. Of the 28 counties with a decreasing renter population, Leslie County had the largest decrease at 30.3 percent, shifting from 1,189 in 2010 to 829 renter households in 2018.
Housing Costs

Not only are the number of households who rent their dwelling increasing in Kentucky and the U.S. but also the cost of housing is increasing for renters at a greater rate than owners. Looking at Kentucky compared to the U.S. and similar states, housing costs for renter households increased between 2010 and 2018 across all states and the U.S. overall. The figure below displays the percent change in median housing cost for renters between 2010 and 2018, which ranges between a 16.2 percent increase in Ohio and a 29.5 percent increase in West Virginia. The median rent for Kentucky renters increased from $601 per month in 2010 to $741 per month in 2018, a 23.3 percent increase. Kentucky homeowners also experienced an increase in housing costs, with the median mortgage increasing from $1,080 in 2010 to $1,158 in 2018, a 7.2 percent increase. Given these increases, it costs households 64 percent more in median monthly costs to own a home than to rent dwelling space in Kentucky (up from 55.6% in 2010).

IMPACT OF COVID ON HOUSING

At the beginning of the COVID pandemic, the U.S. Census began surveying U.S. households to better understand their ability to cope with the economic uncertainty brought on by temporary closures in the Spring of 2020 and beyond. Currently in its third phase, the Household PULSE Survey gathered information from households regarding housing, education, and economic security. Across the first two phases (April 23-July 21 and August 19-October 26), an average of 156,000 Kentucky renter households and 135,000 Kentucky home-owner households were estimated to be unable to pay or were able to defer their monthly housing costs. For renter households in Kentucky, the peak of non-payment occurred in mid-May when 24.5 percent of renters reported that they could not pay their monthly housing rents. This percent decreased to approximately 12 percent by the end of October for renters. Overall, a greater percentage of renters are estimated to be housing insecure versus owners, with the percentage of owners unable to pay or deferring their mortgage ranging between 1.8 percent (May) to 8.5 percent (July). However, with provisions and assistance to households financially impacted by the COVID crisis expiring at the end of the 2020 calendar year, this number is expected to spike again for both renters and owners.

POVERTY RATE

Living in poverty can have far-reaching economic, social, and cultural consequences for families and entire populations. Studies reveal that those who grow up in poverty not only experience a lack of basic needs, but that this scarcity can shape their lives and families for generations. In addition, the concentrations of poverty have a significant negative effect on the fiscal health of cities and regions that, as a result, must shoulder higher spending. The U.S. poverty rate increased during the Great Recession and currently stands at around 12 to 13 percent, depending on the data source. From about 1980 to the present, Kentucky’s poverty rate has been consistently higher than both the U.S. and competitor states. The data in the chart show the 3-year moving average poverty rate estimated from the Annual Social and Economic Supplement (ASEC) of the Current Population Survey (CPS). According to the Census Bureau’s 2019 American Community Survey 1-year estimate, another estimate of the poverty rate, Kentucky’s poverty rate is 16.3 percent, which is higher than the U.S. (12.3%) poverty estimate. More information about the definition of poverty, the poverty rate, and the poverty threshold is in the Glossary of this report.

![Poverty Rate Chart](https://example.com/poverty-rate-chart.png)

Poverty Rate 1976 to 2019, Kentucky, Competitor States, and the U.S.

(percent of individuals in poverty, 3-year average)

Kentucky’s persistently poor counties are concentrated in Eastern Kentucky, but high poverty is found across the state. Poverty rates in 7 counties are at least 35 percent—Clay, McCreary, Bell, Harlan, Leslie, Breathitt, and Owsley Counties. Meanwhile, Boone, Oldham, and Spencer Counties have rates in the single digits. There can be, of course, concentrated pockets of poverty within counties with relatively low rates. At 25.1 percent, the “mostly rural” counties generally have higher poverty rates than “slightly rural” (19.4%) and metro counties (14.7%).

Kentucky County-Level Poverty Rates, 2014-2018

Source: American Community Survey, 2018 5-Year Estimate, Table S1701
CHILD POVERTY

Child poverty, and all that it bodes for the future, continues to be disturbing and vexing problem for Kentucky. Here, we illustrate child poverty rates for Kentucky, the competitor states, and the U.S. The rates shown are for children who live in households with incomes below 100 percent of the federal poverty level. Kentucky’s poverty rate for children under 18 in 2019 was 21.7 percent, significantly higher than the U.S. rate of 16.8 percent. Nationally, only three states have child poverty rates statistically significantly higher than Kentucky (e.g., Louisiana, Mississippi, and New Mexico). At 28.1 percent, Mississippi has the highest child poverty rate in the nation; New Hampshire is the lowest with a child poverty rate of 7.1 percent.

Poverty Rate, 2019, Children Under 18, Kentucky, Competitor States and the U.S.

(Percent of individuals)

Source: 2018 American Community Survey 1-Year Estimates
ELDER POVERTY

The first wave of Baby Boomers started hitting the traditional retirement age of 65 in 2011. At 11.6 percent, Kentucky’s population of persons aged 65 and older who live below the poverty level is higher than most of the competitor states as well as the U.S. average of 9.4 percent. In Kentucky, the state’s underfunded pension systems could certainly make some retirees feel less financially secure. According to the Employee Benefit Research Institute’s 2020 Retirement Confidence Survey, which is a national survey, “77% of retirees are confident they have enough money for a comfortable retirement.” According to the EBRI researchers, “81% of retirees feel confident they will have enough money to take care of basic expenses in retirement, have enough to take care of medical expenses (70%), and have enough money to last their entire life (68%).”

Poverty Rate, 2019, Adults 65 and Over
Kentucky, Competitor States and the U.S.
(percent of individuals)

Source: 2019 American Community Survey 1-Year Estimates
Food security is defined as having “access at all times to enough food for an active, healthy life for all household members,” while food insecurity means “that the food intake of one or more household members was reduced and their eating patterns were disrupted at times during the year because the household lacked money and other resources for food.” As shown in the figure below, food insecurity has generally been higher in Kentucky than in the competitor states or the U.S. for the past 30 years. According to a September 2020 USDA report, Household Food Security in the United States in 2019, an estimated 13.7 percent of Kentucky households experienced low or very low food security, on average, during the 2017 to 2019 period. This is a rate that is statistically significantly higher than the U.S. overall (11.1%) during the same period. Generally, national data show that rates of food insecurity tend to be higher for certain groups, such as households with children—especially young children (under age 6), households with children headed by a single parent—especially a woman, households headed by a minority—especially Black and Hispanic, and the elderly. Research by University of Kentucky economist James Ziliak reveals that rates of food insecurity have remained persistently high following the Great Recession for Americans over 60.
FOOD STAMP PARTICIPATION

The Food Stamp Act of 1977 defines this federally-funded program as one intended to “permit low-income households to obtain a more nutritious diet.” Nationally, almost 75 percent of Food Stamp Program (FSP) participants are in families with children and more than one-quarter of participants are in households with seniors or people with disabilities. As noted on the facing page, University of Kentucky economist James Ziliak has found that rates of food insecurity have remained persistently high following the Great Recession for Americans over 60. This is noteworthy since the Robert Wood Johnson Foundation has reported on research showing that seniors who participate in the Supplemental Nutrition Assistance Program (SNAP) are much less likely to be admitted to nursing homes and hospitals. The implication of this finding, of course, is that ensuring food security for elders can potentially reduce health care costs and improve health outcomes. In 2018, an estimated 13.8 percent of Kentucky’s population participated in the FSP, a percentage higher than both the competitor states (12.8%) and the U.S. (12.4%). SNAP benefits are dependent on, among other factors, family size and income levels—with the average SNAP recipient in the U.S. receiving about $126 a month. The average per person benefit in Kentucky is around $116.

Food Stamp Program, Average Monthly Participation, Kentucky, Competitor States, and the U.S., 1980-2018
(percent of the total population)

FOOD INSECURITY AND THE PANDEMIC

An indelible and incongruent image emerged in 2020 news reports as the pandemic spread through communities across the United States—long lines of relatively new and well-maintained cars, minivans, and trucks winding their way through parking lots as the inhabitants waited patiently for their turn to receive donated food staples from community food banks. The novel coronavirus SARS-CoV-2 (COVID-19) has exposed numerous cracks in the armature that many Americans thought they could marshal against economic, housing, and food insecurity. This county-level map of the United States shows the estimated impact of COVID-19 on food security. In June 2020, the Feeding America research team released estimates on how increased unemployment and poverty in the wake of the pandemic would impact food security across the country. Resting on the experiences of the Great Recession, their model-based estimates show that the number of Americans facing food insecurity could increase from about 40 million in 2018 to about 57 million in 2020—an increase of 43 percent. This translates into an expected increase in the percentage of food insecure Americans from 12.2 to 17.4 percent.

Impact of COVID-19 on Food Insecurity in the United States

(Estimated percentage increase from 2018 to 2020)

Source: Gundersen, C., M. Hake, A. Dewey, E. Engelhard (2020). The Impact of the Coronavirus on Food Insecurity v1 [Data file and FAQ]. Available from Feeding America: research@feedingamerica.org
Kentucky’s food insecurity rate was already relatively high before the pandemic—exceeding the U.S. and competitor state averages. The *Feeding America* research team estimates that because of the pandemic, Kentucky’s food insecurity rate has increased to 20 percent of the state’s population, adding another 230,000 individuals to those already experiencing food insecurity. The largest percentage increases, by county, occurred in the Urban Triangle region of the Commonwealth, led by Oldham, Boone, and Spencer Counties. This reflects, in part, the relatively low percentage of food insecurity households in this region prior to the pandemic, and conversely, the high baseline of food insecurity throughout Eastern and South Central Kentucky.

Impact of COVID-19 on Food Insecurity in Kentucky

(Estimated percentage increase from 2018 to 2020)

Source: Gundersen, C., M. Hake, A. Dewey, E. Engelhard (2020). The Impact of the Coronavirus on Food Insecurity v1 [Data file and FAQ]. Available from Feeding America: research@feedingamerica.org
TEMPORARY ASSISTANCE FOR NEEDY FAMILIES

The number of Kentuckians receiving Aid to Families with Dependent Children (AFDC)—known as Temporary Assistance to Needy Families (TANF) since the 1996 welfare reform law—has decreased significantly from its high point of 229,400 in 1992 to 38,600 in 2018; roughly 80 percent of the recipients in 2018 were children. This decline is not unique to Kentucky. For example, marking the 20th anniversary of the 1996 legislation that fundamentally changed the program, the Center on Budget and Policy Priorities (CBPP) issued a report in August, 2016, noting that nationally the number of families receiving TANF (AFDC) benefits for every 100 families with children in poverty has declined sharply over time. In 1979, for instance, 82 families per 100 with children in poverty received benefits, compared to 68 in 1996—when TANF was enacted—to 23 in 2014. As a percentage of the total population, more Kentuckians received TANF benefits in 2018, about 0.9 percent, than the competitor state average of 0.4 percent. The benefit amount for a Kentucky family of three is $262 per month, which has not changed since 1996. If the benefit had been indexed to the inflation rate it would equal over $400 now.

Medicaid is a state-federal partnership to provide health care coverage for people with lower incomes, older people, individuals with disabilities, and some families and children. The Medicaid program is jointly funded by states and the federal government. In Kentucky, the Department for Medicaid Services administers the program, which is budgeted for over $12.4 billion in Kentucky’s FY2021 appropriations. There are many types of services provided for Kentucky’s nearly 1.5 million Medicaid beneficiaries—from inpatient hospitalization to long-term care to prescription drugs for acute care. Medicaid constitutes a significant portion of Kentucky’s total state government spending. According to the National Association of State Budget Officers, *State Expenditure Report: Fiscal Years 2018-2020*, 29.1 percent of Kentucky state government expenditures were for Medicaid in FY2020. The percentage of the population on Medicaid in Kentucky, the competitor states, and the U.S. is 33, 21 and 23 percent, respectively. And, as a result of the Affordable Care Act, Kentucky has experienced one of the largest increases in Medicaid enrollment in the country. The U.S. average is a 32 percent increase in enrollment, compared to Kentucky’s 141 percent.

<table>
<thead>
<tr>
<th>Area</th>
<th>Pre-ACA Average Monthly Enrollment</th>
<th>Total Monthly Medicaid/CHIP Enrollment</th>
<th>% Change</th>
<th>% Total Population Enrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>56,511,799</td>
<td>75,521,263</td>
<td>32%</td>
<td>23%</td>
</tr>
<tr>
<td>AL</td>
<td>799,176</td>
<td>965,307</td>
<td>21%</td>
<td>20%</td>
</tr>
<tr>
<td>GA</td>
<td>1,535,090</td>
<td>1,951,725</td>
<td>27%</td>
<td>18%</td>
</tr>
<tr>
<td>IL</td>
<td>2,626,943</td>
<td>3,018,195</td>
<td>15%</td>
<td>24%</td>
</tr>
<tr>
<td>IN</td>
<td>1,120,674</td>
<td>1,627,602</td>
<td>45%</td>
<td>24%</td>
</tr>
<tr>
<td>KY</td>
<td>606,805</td>
<td>1,460,399</td>
<td>141%</td>
<td>33%</td>
</tr>
<tr>
<td>MS</td>
<td>615,556</td>
<td>639,560</td>
<td>4%</td>
<td>21%</td>
</tr>
<tr>
<td>MO</td>
<td>846,084</td>
<td>941,651</td>
<td>11%</td>
<td>15%</td>
</tr>
<tr>
<td>NC</td>
<td>1,595,952</td>
<td>1,874,977</td>
<td>17%</td>
<td>18%</td>
</tr>
<tr>
<td>OH</td>
<td>2,130,322</td>
<td>2,819,633</td>
<td>32%</td>
<td>24%</td>
</tr>
<tr>
<td>SC</td>
<td>889,744</td>
<td>1,061,957</td>
<td>19%</td>
<td>21%</td>
</tr>
<tr>
<td>TN</td>
<td>1,244,516</td>
<td>1,506,801</td>
<td>21%</td>
<td>22%</td>
</tr>
<tr>
<td>VA</td>
<td>935,434</td>
<td>1,519,888</td>
<td>62%</td>
<td>18%</td>
</tr>
<tr>
<td>WV</td>
<td>354,544</td>
<td>528,335</td>
<td>49%</td>
<td>29%</td>
</tr>
<tr>
<td>CS</td>
<td>14,694,035</td>
<td>18,455,631</td>
<td>26%</td>
<td>21%</td>
</tr>
</tbody>
</table>

Note: CS is a weighted average of the competitor states.
SUPPLEMENTAL SECURITY INCOME (SSI)

The Supplemental Security Income (SSI) is a Federal income supplement program that is administered by the Social Security Administration (SSA) and funded by general tax revenues (not Social Security taxes). According to the SSA, “It is designed to help aged, blind, and disabled people, who have little or no income, and it provides cash to meet basic needs for food, clothing, and shelter.” Of Kentucky’s 174,200 recipients in 2018, 5 percent were aged and 95 percent were blind and/or disabled. Nearly one-third of the recipients were either under 18 (14%) or over 64 years old (19%). As is evident by the figure, the percentage of Kentuckians receiving SSI benefits, 3.9 percent, is much higher than the U.S. (2.5%) or competitive state averages (2.4%).

Supplemental Security Income (SSI) Recipients, Kentucky, Competitor States, and the U.S., 1990-2018
(percent of the total population)

DISABILITY INCOME (DI)

According to the Social Security Administration, “Studies show that just over 1 in 4 of today’s 20 year-olds will become disabled before reaching age 67.” The Social Security Disability Insurance (SSDI) program pays benefits to disabled individuals and some family members if the individual worked long enough and paid Social Security taxes. Kentucky has a higher than average disability rate so it is not surprising that a higher percentage of the state’s population receive DI benefits. The percentage of Kentuckians between 18 and 64 years old who receive DI benefits is 7.8 percent, markedly higher than both the competitor state (5.4%) and U.S. (4.5%) averages. The average monthly benefit nationally for disabled workers is about $1,200.

WOMEN, INFANTS, AND CHILDREN (WIC)

Women, Infants, and Children (WIC) is a federal nutrition program for “supplemental foods, health care referrals, and nutrition education for low-income pregnant, breastfeeding, and non-breastfeeding postpartum women, and to infants and children up to age five who are found to be at nutritional risk.” In Kentucky, around 2.3 percent of the population receives WIC benefits, representing a steady decline since its recent peak in 2010; in fact, Kentucky’s percentage is at its lowest point since the late 1980s. Kentucky’s percentage is only slightly higher than the U.S. (2.1%) and competitor states (1.9%).

(percent of the total population)

E DUCATION IS THE TAPROOT of individual well-being and community prosperity. As one climbs the educational ladder, the resulting economic benefits, such as higher income and lower unemployment, get larger, especially for those with a four-year degree or higher. Likewise, there is a clear and consistent pattern with higher levels of education associated with better health, less dependence on public assistance, and increased technology use—just to name a few other benefits. And what is generally good for the individual also benefits the wider community—such as lower crime rates and more volunteerism.

Kentucky’s educational status has improved since the early 1990s, when its educational reputation was at a low point. Our analysis shows that Kentucky is statistically higher than 9 states, lower than 17, and statistically no different from 23, based on 12 educational attainment and achievement factors combined into a single index. To improve educational outcomes in Kentucky, we cannot limit our focus solely to the classroom. Even before the COVID-19 pandemic, Kentucky faced many obstacles to cost-effective educational performance, ranging from high poverty to poor health to inadequate internet access—especially in the state’s rural areas. Moderating the harmful effects of poverty on learning will help to reduce these obstacles and facilitate even higher returns.

The state’s educational position relative to other states has been languishing in the “middle of the pack”

continued on the next page
for several years. As policymakers and educational thought leaders search for the strategies and approaches to improve Kentucky’s educational position, there are consistently, year after year, a select group of public schools in Kentucky that perform better than expected on measures of educational achievement. These measures include things like the percentage of elementary students who achieve proficiency or distinguished in reading, or the proportion of less-advantaged middle school students who show a similar level of competency on the math assessment.

Student outcomes, of course, are the bottom lines for schools and districts, and there is a wide distribution of outcomes across the state’s public schools. Our analysis of Kentucky’s schools, based on a broad range of student outcomes, family and community backgrounds, and school characteristics, has yielded 47 schools that have performed better than expected—which we refer to as “bright spots.” For example, Knox County Middle School and South Laurel Middle School in Laurel County performed similarly on the 2018-2019 K-PREP middle school mathematics assessment, demonstrated by 50.9 and 51.1 percent of their students scoring proficient or distinguished, respectively. Yet, once we consider student, school, district, and community factors, only one of these schools performs “better than expected”—Knox County Middle School. While South Laurel Middle School performs at a level we expect, Knox County Middle School performs much better than we expect; in fact, it performs 20 percentage points higher than we expect.

Understanding the reasons for better-than-expected performance is fundamentally important. While our analysis does not fully address the question of why students perform better than expected, our results can be used to inform further inquiry on that question. Our work is best viewed as a statistical sieve designed to narrow the list of candidate schools worthy of closer examination. It is important to note that we assess the performance of all students, especially at-risk students, such as low-income and disabled students, as fundamentally important indicators of school success. By subjecting a school to closer scrutiny, one can gain a sense of confidence about identifying the constellation of factors facilitating exceptional performance—and hopefully facilitate the adoption of these practices to other schools. The key to moving the needle on educational performance in the state is to strategically invest resources in the programs and places offering the highest returns on those investments.
Those with higher levels of education have realized wage gains since the 1970s, while those with only a high school credential, or less, have experienced large declines in hourly wages. These data include hourly earnings for workers paid by the hour (excluding overtime, tips, commissions, and bonuses), as well as the usual hourly earnings for nonhourly workers (including overtime, tips, commissions, and bonuses). The labor market in the U.S. has changed significantly over the last three and a half decades. Real hourly wages (inflation removed) for Kentuckians with only a high school credential declined by about 5 percent from the late 1970s to the present. At the same time, the wages of those individuals with a Bachelor’s degree increased slightly, by 4 percent. As is evident by the chart, the same pattern has played out in the competitor states and across the U.S. The lesson here is clear: to get ahead financially in today’s labor market, it is essential to have higher levels of education.
Family Income by Education

Economists and other researchers have long demonstrated the relationship between education and earnings. Using data from the U.S. Census Bureau American Community Survey (ACS) for the years 2014-2018, statistical methods were implemented to isolate the impact of education on earnings from the many other known factors such as age and gender which affect earnings as well. In Kentucky, there is roughly a $10,000 difference for a family where the head of the household has less than a high school credential, a high school diploma or equivalent, or some college—which includes an associate’s degree; even more striking, earning a bachelor’s degree or higher leads to an 87% higher family income than a family headed by a high school graduate.

![Estimated Family Income by Education, Kentucky, Competitor States, and the U.S., 2014-2018](chart.png)

LABOR FORCE PARTICIPATION BY EDUCATION

While it is well known that a positive relationship exists between educational attainment and earnings for those who are in the labor market, an important part of how education impacts the economy is the labor force participation rate. Looking at labor force participation rates in 2018 for Kentucky, the competitor states, and the U.S. overall, the graph below shows the clear relationship between educational attainment and labor force participation. These data illustrate a consistent rise in the labor force participation rates as education levels increase from a high school diploma to a post-secondary degree.

Labor Force Participation by Education, 2018
Kentucky, Competitor States, and the U.S.
(population 25 to 64 years old)

Source: American Community Survey, 2018 1-Year Estimate, Table S2301
Volunteer Rate by Education

In the Community section of this report, we present data on volunteer rates for Kentucky, its competitor states, and the U.S., and discuss some of the social and economic benefits that result from high levels of community service and volunteerism. In the figure below we present volunteer rates for Kentucky, its competitor states, and the U.S. for four broad education groups: individuals with less than a high school degree, individuals with a high school degree only, individuals with some college (including associates degrees), and individuals with at least a bachelor’s degree. The percentages below reflect the net effect of education on volunteering while holding other factors constant, such as income, gender, race, urbanity, and age. Kentucky’s volunteer rates shown in the figure are consistent with the U.S. and competitor states for all of the education categories. There is, in addition, a clear and consistent relationship between increasing education levels and higher rates of volunteerism. Individuals with a bachelor’s degree volunteer at a significantly higher rate than those with less education. This is important given the social and economic benefits realized from volunteer activities.

Volunteer Rate by Education, 2017
Kentucky, Competitor States and the U.S.
(net effect of educational attainment, ages 25 and older, percentage)

Source: Author’s analysis of September 2017 Current Population Survey (CPS) Volunteer Supplement data

Gatton College of Business & Economics
Research shows that because the Internet permeates so many aspects of our lives, access to and use of it appear to be increasingly important for anyone becoming politically informed, socially integrated, and economically successful in the Information Age. Studies suggest that “Internet use increases employment and income, enhances consumer welfare, and promotes civic engagement,” (NTIA, 2013), and that enhancing the nation’s broadband infrastructure can improve innovation, entrepreneurship, and productivity. The importance of high-speed Internet access promises to become even more important in the future as online education becomes more firmly rooted. Analysis conducted by CBER shows that the independent effect of education (holding income, gender, age, race, and urbanity constant) is strong. For example, individuals in Kentucky with a Bachelor’s degree or higher have a much higher probability of accessing the Internet (86%), ranging from locations such as home, work, school, library, cafe, a friend’s house or some other place, than someone with a high school diploma (75%). This relationship is consistent across all levels of education and all geographic regions shown.

Individuals who Access the Internet by Education Level, Kentucky, Competitor States, and the U.S., 2019
(estimated independent effect, from any location, 25 and older)

Source: Estimated by the author using CPS November 2019 Computer and Internet Supplement data
Health by Education

It is estimated that more than 75 percent of health care costs are due to chronic conditions such as heart disease, cancer, stroke, diabetes, and arthritis. Much of the chronic disease is caused by four preventable health risk behaviors—lack of exercise, poor nutrition, smoking, and heavy alcohol consumption. When compared to the U.S. as well as states that are widely considered to be Kentucky’s competitors for economic development prospects, Kentuckians are more likely to smoke, be obese, and not engage in regular physical activity. However, higher levels of education are generally associated with healthier behaviors and lower rates of chronic diseases. We analyzed data from the Behavioral Risk Factor Surveillance System (BRFSS) to explore these relationships. These data represent a comprehensive sample of Kentuckians and provide information on whether a person is at risk for chronic disease, evidenced by the four health risk behaviors. Our models control for other factors, such as race, gender, age, and income, and estimate differences in chronic disease risk behaviors by education levels. For Kentucky, the competitor states, and the U.S. overall, the chronic disease risk behaviors decrease as education levels go up. In Kentucky, for example, the estimated chronic disease risk behaviors go from 72 percent to 54 percent as educational attainment increases from a high school diploma to a college degree.

Estimated Chronic Disease Risk Behaviors by Education, Kentucky, Competitor States, and the U.S., 2015-2019
(estimated independent effect or net percent)

Source: Estimated by the author using CDC Behavioral Risk Factor Surveillance System data, data pooled for 5 years, 2015 to 2019
In Kentucky, the percentage of high school graduates who are the head of a household receiving SNAP benefits (the Supplemental Nutrition Assistance Program previously known as Food Stamps), Medicaid health benefits, Supplemental Security Income (SSI), or public assistance income is 3.8 times higher than those with a bachelor’s degree or higher—29.4 percent compared to 7.8 percent. After controlling for age, income, gender and race, the net effect of education on whether one is receiving public assistance is still strong. As illustrated in the bar chart, a Kentucky high school graduate is estimated to be 1.7 times more likely to receive public assistance (25%) than someone with a bachelor’s degree or higher (15%). Importantly, this relationship—higher levels of educational attainment associated with lower levels of public assistance program participation—holds across a range of public assistance programs including, of course, those described above, but not limited to these four programs. Research done, for example, by the College Board and RAND show a robust relationship across several public assistance programs, such as the National School Lunch Program, Unemployment Insurance, and various housing programs. Public assistance participation rates decline as education levels increase. In short, investing in education reduces the need and usage of public assistance programs.

![Estimated Public Assistance Recipient by Education, Kentucky, Competitor States, and the U.S., 2019](image)

Source: Estimated by the author using U.S. Census, 2019 1-year PUMS
The map below shows how educational outcomes in Kentucky compare to those in other states. Based on 12 educational attainment and achievement factors combined into a single index (see the table on the following page), Kentucky is statistically higher than 9 states, lower than 17 states, and no different statistically from 23 states (using a 90% confidence interval). Looking at Kentucky’s competitor states, this Index shows that Kentucky ranks higher than Alabama, Mississippi, and West Virginia, but lower than Illinois and Virginia. There is not a statistically significant difference between Kentucky and the other competitor states (i.e., Georgia, Indiana, Missouri, North Carolina, Ohio, South Carolina, and Tennessee).
Some key indicators used to compare states on educational outcomes are listed below. They include measures of educational attainment, such as the percentage of the population 25 to 54 (prime working age) with a high school diploma or bachelor’s degree, as well as educational achievement, including the percentage of students scoring proficient or higher on the various National Assessment of Educational Progress (NAEP) reading, math, and science exams. Kentucky students were statistically no different from the national public students in 4th grade math, 4th grade reading, and 8th grade reading, but significantly lower in 8th grade math. On the other hand, Kentucky high school students continue to make significant gains in the percentage of recent graduates who are college and career ready as well as demonstrating Advanced Placement exam mastery. Finally, as evidenced by many of the indicators listed below, there is a considerable gap between Kentucky and the top tier of states. The top 17 states are those shown in the U.S. map on the facing page as statistically significantly higher than Kentucky on the education index.

Comparing Education Indicators for Kentucky, United States, and the Top 17 States, 2015-2020 (numbers are percentages)

<table>
<thead>
<tr>
<th>Education Indicators</th>
<th>Kentucky</th>
<th>U.S.</th>
<th>Average for Top 17 States*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS Diploma or Higher (2019)</td>
<td>90.3</td>
<td>89.8</td>
<td>92.0</td>
</tr>
<tr>
<td>Two-Year Degree (2019)</td>
<td>9.7</td>
<td>9.2</td>
<td>9.1</td>
</tr>
<tr>
<td>Bachelor’s Degree or Higher (2019)</td>
<td>29.0</td>
<td>36.3</td>
<td>42.2</td>
</tr>
<tr>
<td>Adj. Cohort HS Grad Rate (2017-18)</td>
<td>90.3</td>
<td>85.3</td>
<td>86.7*</td>
</tr>
<tr>
<td>ACT % College/Career Ready (2020)</td>
<td>18.8</td>
<td>25.9</td>
<td>37.5</td>
</tr>
<tr>
<td>8th Grade Math NAEP (2019)</td>
<td>29.0</td>
<td>32.9</td>
<td>38.8*</td>
</tr>
<tr>
<td>8th Grade Reading NAEP (2019)</td>
<td>33.4</td>
<td>32.4</td>
<td>37.6*</td>
</tr>
<tr>
<td>8th Grade Science NAEP (2015)</td>
<td>34.5</td>
<td>33.1</td>
<td>40.0*</td>
</tr>
<tr>
<td>4th Grade Math NAEP (2019)</td>
<td>39.9</td>
<td>40.4</td>
<td>44.7*</td>
</tr>
<tr>
<td>4th Grade Reading NAEP (2019)</td>
<td>35.1</td>
<td>34.3</td>
<td>38.2*</td>
</tr>
<tr>
<td>4th Grade Science NAEP (2015)</td>
<td>44.4</td>
<td>36.5</td>
<td>42.9*</td>
</tr>
<tr>
<td>AP % Exam Mastery (2019)</td>
<td>18.1</td>
<td>23.9</td>
<td>26.1*</td>
</tr>
</tbody>
</table>

*The top 17 states are statistically significantly higher than Kentucky (using a 90% confidence interval): CO, CT, IL, MA, MD, ME, MN, NE, NH, NJ, NY, PA, UT, VA, VT, WA & WI.

*This is the average of the state averages—not a weighted average of these 17 states.

Note: HS Diploma, Two-Year Degree, and Bachelor’s Degree are for those between 25 and 54, the prime working age. The NAEP data reflect the percentage of public students scoring proficient or higher, and the U.S. data represents the National Public.
SELECTED OBSTACLES TO EDUCATION

While Kentucky has made educational progress, there is much to be done to improve educational outcomes—and not all of it strictly in the classroom. As is evident by the numbers in the table, obstacles to cost-effective educational performance are more prevalent in Kentucky than in most other places. Each of the factors listed below represents a potential obstacle to optimal educational performance and/or cost-effective educational spending. Considering factors like poverty, parental education, obesity, students’ health status, disability rates, and missed school days, these obstacles, if addressed, would enable better educational outcomes in Kentucky.

<table>
<thead>
<tr>
<th>Obstacles</th>
<th>Kentucky</th>
<th>U.S.</th>
<th>Average Top 16 States†*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children who have at least one parent with a postsecondary degree (2017)</td>
<td>46.5</td>
<td>50.8</td>
<td>59.1</td>
</tr>
<tr>
<td>Children eligible for free and reduced priced lunch (2017-18)</td>
<td>59.7</td>
<td>51.5</td>
<td>40.1</td>
</tr>
<tr>
<td>Students who live in rural areas (2016-17)</td>
<td>32.2</td>
<td>15.4</td>
<td>18.5</td>
</tr>
<tr>
<td>Children and teens (10 to 17) who are overweight or obese (2017-18)</td>
<td>38.0</td>
<td>30.8</td>
<td>28.0</td>
</tr>
<tr>
<td>Students with disabilities as a percent of public school enrollment (2017-18)</td>
<td>15.3</td>
<td>13.7</td>
<td>15.1</td>
</tr>
<tr>
<td>Limited English proficiency students as a percent of total enrollment (2016)</td>
<td>3.2</td>
<td>9.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Children (6 to 17) who missed 11 or more school days due to illness/injury (2017-18)</td>
<td>4.8</td>
<td>4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Children (0 to 17) whose overall health is fair or poor (2017-18)</td>
<td>1.8</td>
<td>1.4</td>
<td>1.1</td>
</tr>
</tbody>
</table>

†The top 16 states based on the education index are: CO, CT, IL, MA, MD, ME, MN, NE, NH, NJ, PA, UT, VA, VT, WA & WI.
*These percentages are the averages of the state averages—not a weighted average of the top 16 states.
Kentucky’s NAEP results show that, on average, an estimated 36.1 percent of 4th and 8th graders scored proficient or higher on the math, reading, and science exams (2015 Science results, 2019 Reading and Math results). With per pupil expenditures of $11,210 (adjusted for cost-of-living differences across the states), Kentucky gets an estimated 3.2 NAEP proficiency percentage points for every $1,000 in per pupil spending. Once we account for the relative differences in obstacles to optimal educational performance and/or cost-effective educational spending faced by the states (e.g., the obstacles are listed in the table on the facing page), we find that Kentucky and 31 other states perform as expected given the obstacles they face. There are 11 states that perform better than expected, and 8 states perform lower than expected.
The Kentucky Department of Education Kindergarten Readiness Screener data show that only half (51.0%) of the students who entered kindergarten in 2019 were ready when assessed on three scales: academic/cognitive; language development; and physical development. Moreover, children with Limited English Proficiency (31.7%), those receiving Free or Reduced Price Meals (41.2%), and those with a disability (35.0%) have even lower levels of readiness. Early childhood development programs can help. A 2016 RAND study—*Informing Investments in Preschool Quality and Access in Cincinnati: Evidence of Impacts and Economic Returns from National, State, and Local Preschool Programs*—touts their benefits. “High-quality preschool programs represent a significant investment of resources, but that investment may be paid back through improved outcomes during the school-age years and beyond,” said the authors. They found that “credible estimates of the economic return for full-scale high-quality preschool programs range from about $2 to $4 for every $1 invested.” Similarly, a 2009 CBER study estimated that in Kentucky “the total estimated benefit is more than $5 for every $1 the state would invest in an expanded pre-k program.” According to estimates from the National Institute for Early Education Research, 29.4 percent of Kentucky’s 3- and 4-year-olds are enrolled in *public* pre-kindergarten programs.

Estimated Enrollment in Pre-K Programs, Kentucky, Competitor States and the U.S., 2019

(percent of all children 3- and 4-years-old in public Pre-K, Pre-K special education, & Head Start)

![Bar chart showing estimated enrollment in Pre-K programs for Kentucky, competitor states, and the U.S. in 2019.](source)

Source: Estimated from The State of Preschool 2019, State Preschool Yearbook, National Institute for Early Education Research. Note: These estimates likely include some double-counted children since some Head Start children are likely in State Pre-K programs too.
Less-advantaged students face many obstacles to educational success. On average, students eligible for free- or reduced-priced lunch in Kentucky follow national trends and do not score as high on standardized tests such as NAEP when compared to students who are not eligible; the same is true for Kentucky’s various state-specific assessment tools, such as the Kentucky Performance Rating for Educational Progress (K-PREP). Regardless of the assessment system, less-advantaged students do not perform as well, on average, as more-advantaged students. Researchers at organizations like the Education Trust, for example, have examined the underlying reasons for the achievement gap and identified several systemic causes. A student’s eligibility for the free-lunch program is determined by household income and size. During the 2018-2019 school year, Kentucky ranked above the national average with 56.8 percent of public school students eligible for a free- or reduced-priced lunch. The national average is 51.2 percent. Among the 50 states, Mississippi has the highest percentage at 74 percent while New Hampshire has the lowest at 27 percent.

Students Eligible for Free or Reduced-Price Lunch, 2018-19, Kentucky, Competitor States, and the U.S. (percent of public school students, school year 2018-19)

Performance on Standardized Tests

The National Assessment of Educational Progress (NAEP), commonly known as the “Nation’s Report Card,” gauges student progress in a variety of subject areas, including reading, mathematics, and science. Here we present the test results for 4th and 8th graders from 2005 to 2019. Over this time period, Kentucky 4th graders experienced large gains in math and more modest gains in reading. At the 8th grade level, Kentucky students have demonstrated modest gains in math, but have consistently trailed the national performance. Reading proficiency for Kentucky 8th graders rose to levels that were significantly higher than the national percentages in 2011 and 2013, but have since fallen to a level reached a decade ago in 2009. Performance in science has been unchanged, but generally better than the national public. In 2019, Kentucky students were statistically no different from the national public students in 4th grade math, 4th grade reading, and 8th grade reading, but significantly lower in 8th grade math. While 33 percent of the nation’s 8th graders scored proficient or higher on the math assessment in 2019, around 29 percent reached this level in Kentucky—a statistically significant difference.

Kentucky’s Math, Reading, and Science NAEP Results, Percentage Scoring Proficient or Higher, By Subject, Grade, and Year

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 4</td>
<td>26(\uparrow)</td>
<td>31(\uparrow)</td>
<td>37</td>
<td>39</td>
<td>42</td>
<td>41</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Math 8</td>
<td>23(\uparrow)</td>
<td>27(\uparrow)</td>
<td>27(\uparrow)</td>
<td>31(\uparrow)</td>
<td>30(\uparrow)</td>
<td>28(\uparrow)</td>
<td>29(\uparrow)</td>
<td>29(\uparrow)</td>
</tr>
<tr>
<td>Reading 4</td>
<td>31</td>
<td>33</td>
<td>36(\uparrow)</td>
<td>35</td>
<td>36</td>
<td>40(\uparrow)</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>Reading 8</td>
<td>31</td>
<td>28</td>
<td>33</td>
<td>36(\uparrow)</td>
<td>38(\uparrow)</td>
<td>36</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>Science 4</td>
<td>-</td>
<td>-</td>
<td>45(\uparrow)</td>
<td>-</td>
<td>-</td>
<td>44(\uparrow)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Science 8</td>
<td>-</td>
<td>-</td>
<td>34(\uparrow)</td>
<td>34(\uparrow)</td>
<td>-</td>
<td>35</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: National Center for Education Statistics (NCES), Institute of Educational Sciences (IES), National Assessment of Educational Progress (NAEP), Kentucky State Profile.

Note: A dash (\(-\)) in the cell indicates that this test was not taken by Kentucky students. An arrow pointed down (\(\downarrow\)) next to a number indicates that the percentage is statistically significantly lower than the National public percentage. Conversely, an arrow pointed up (\(\uparrow\)) next to a number indicates that the percentage is significantly higher. No arrow indicates that the Kentucky percentage is not significantly different from the National public.
A 2015 study authored by RAND Corporation economist Lynn Karoly on the economic consequences of the achievement gap in Pennsylvania illustrates the magnitude of these costs for the wider society. In Kentucky, the academic success of disadvantaged children will affect whether the state’s future remains one of disproportionate poverty or gives way to rising prosperity. Economic disadvantage has a significant negative drag on academic performance, and the sheer number of economically disadvantaged students in Kentucky adversely affects overall performance on both state and national tests. Kentucky has one of the nation’s largest populations of students eligible for free or reduced-price lunches (59%), a reliable proxy for poverty and need. The different outcomes on the National Assessment of Educational Progress (NAEP) exams are stark. The percentage of students scoring at or above proficiency is consistently and markedly lower for less-advantaged students in every subject area. As evident below in the figure, proficiency levels for less-advantaged students are generally less than half the level of more-advantaged students. Were we to close the substantial academic gaps associated with inequities, Kentucky students would be performing at dramatically higher levels relative to their national peers and our goals for education would be nearly realized.

Source: https://www.nationsreportcard.gov/ndecore/xplore/NDE
An estimated 19 percent of Kentucky’s recent high school graduates are considered “college ready” in all four of the tested subjects—English, reading, mathematics, and science—a decrease from 22 percent in 2018 and 20 percent in 2019. The percentage of students nationally and in the competitor states who are “college ready” in all four subjects is higher than it is in Kentucky, 26 and 23 percent respectively. It should be noted that one reason for Kentucky’s lower percentage is that since 2009 state law mandates that every 11th grader take the ACT—even those who have no interest or intention of going to college. In contrast, 66 percent of the graduating class in the competitor states and 49 percent nationally took the ACT in 2020. At 59 percent, Massachusetts has the highest percentages of students “college ready” in all four subjects, but only 18 percent of Massachusetts students took the ACT in 2020—and these are likely self-selected, college-bound students.

Percent of 2020 ACT-Tested High School Graduates Meeting College Readiness Benchmarks by Subject, Kentucky, Competitor States, and the U.S.

Source: The Condition of College & Career Readiness, 2020, various state reports, ACT, Inc.
In order to pass an Advanced Placement (AP) examination, a high school student must demonstrate mastery of college-level material. Indeed, many colleges and universities award college credit for students showing AP mastery (scoring 3+ on an exam). The National Conference of State Legislatures reports that 28 to 40 percent of first-time undergraduates take at least one remedial course. These high percentages highlight the importance of high school students being challenged academically so they are better prepared in college. The College Board, which administers the advanced placement program, offers 35 different AP exams each spring on subjects ranging from Art History to Calculus to Macroeconomics. In 2019, there were 1.25 million U.S. public high school graduates who had taken an AP exam at some point, with 23.9 percent scoring a 3 or higher. This is a substantial increase from the 15.3 percent in 2008. Kentucky’s students have also increased their performance on AP exams over the years, from 10.3 percent in 2009 to 18.1 percent in 2019—the eighteenth highest increase of all the states and DC during this ten-year period. Massachusetts had the highest percentage of students in the class of 2019 scoring a 3 or higher on an AP exam during high school—33.8 percent. Mississippi, at 7.4 percent, was the lowest.

High School Students Scoring 3+ on AP Exams, Kentucky, Competitor States, and the U.S., 2019
(percent of graduating students)

Source: College Board, AP Report to the Nation, various years, and the AP Cohort Data, Graduating Class, 2019
Kentucky’s labor force increasingly competes in a global environment that demands rising levels of educational attainment. At a minimum, today’s workers need a high school diploma. Following the education reforms of the early 1990s, Kentucky’s adult population (25 and older) made significant gains, as the portion with a high school diploma or higher rose from 65 percent in 1990 to 87.2 percent in 2019. At the same time, the nation improved to 88.6 percent, which is a statistically significant difference from Kentucky’s 87.2 percent. Looking just at those individuals 25 to 54—the prime working age group—Kentucky’s 90.3 percent is statistically the same as the U.S. average of 89.8 percent as well as the competitor state average of 90.5 percent. Among the competitor states, Mississippi, Alabama, and Georgia have statistically significant lower rates, while four states are statistically significantly higher (i.e., OH, VA, MO, & IL); Indiana, North Carolina, South Carolina, Tennessee and West Virginia are statistically the same as Kentucky. Among all states, 29 are higher, 11 are lower, and 9 are statically the same as Kentucky. California has the lowest high school attainment rate (85.6%) and Montana has the highest (95.4%).

High School Graduate or Higher, Kentucky, Competitor States and the U.S., 2019
(percent of individuals 25 to 54 years old)

Source: Estimated from 2019 American Community Survey 1-Year PUMS
Note: CS is the weighted average of the competitor states.
High School Graduation Rate

High-school graduation rates hit a new high of 85.3 percent in the U.S. in the 2017-18 academic year, according to the Department of Education, continuing a eight-year trend of gains in a basic and fundamental credential for gaining employment and access to higher education and training. There are important economic consequences of dropping out of high school—for the individual, of course, but also for the wider community. The U.S. Department of Education data shown in the figure below are the latest data for the competitor states and Kentucky, which are for the 2017-2018 school year. As one can see by the figure, Kentucky is well positioned among the competitor states with a 90.3 percent adjusted cohort graduation rate (ACGR). At 91.4 percent, Iowa has the highest ACGR in the country while New Mexico has the lowest at 73.9 percent; DC is lower than any state, with a value of 68.5 percent.

Graduation Rate, 2017-2018 School Year, Kentucky, Competitor States, and the U.S. (four-year regulatory adjusted cohort graduation rate)

Source: U.S. Department of Education
COLLEGE ATTAINMENT

Kentucky workers face growing competition for low-wage, low-skill jobs, and increasingly for high-skill jobs. Today, any “routine” job and a growing number of high-skill jobs can be automated and outsourced. Competition in such an environment requires providing something that others cannot. That “something” will come from workers who have high levels of education and skill. Essentially, the rigors of the global economy require creative, highly-skilled, college-educated workers. Since 1990, Kentucky has made important progress, as the proportion of adults 25 and older with a four-year degree or higher climbed from 13.6 percent to 25.3 percent in 2019; by comparison, the U.S. percentage in 2019 was 33.2. Among prime working age adults 25 to 54, however, the state continues to significantly lag the competitor states and the nation in educational attainment at the college level—29 percent for Kentucky compared to 34.9 and 36.3 percent for the competitor states and U.S. respectively. Virtually all of the competitor states are (statistically) significantly higher than Kentucky. Alabama is statistically no different from Kentucky, but Mississippi and West Virginia are significantly lower. Massachusetts has the highest rate in the nation (50.7%) and Mississippi the lowest (23%). Nationally, 39 states have higher rates than Kentucky while 6 are lower (4 are statistically the same as Kentucky).

Bachelor's Degree or Higher, Kentucky, Competitor States and the U.S., 2019
(percent of individuals 25 to 54 years old)

Source: Estimated from 2019 American Community Survey 1-Year PUMS
Note: CS is the weighted average of the competitor states.
COLLEGE ATTAINMENT BY COUNTY

There are six Kentucky counties where the percentage of the population with a bachelor’s degree or higher (using the 2014-2018 five-year estimate) exceeds the U.S. average of 31.5 percent. These six counties anchor the so-called urban triangle—Fayette (42.9%), Oldham (42.2%), Campbell (33.5%), Woodford (32.9%), Jefferson (32.7%), and Boone (31.6%). There are ten counties that are above the Kentucky average of 23.6 percent but below the U.S. average—ranging from Shelby County’s 24.2 percent to Warren County’s at 30.6 percent. Kentucky’s remaining 104 counties are below the Kentucky average, with several in the single digits. It is extremely difficult for any geographic region—whether a city, a county, a state, or a country—to be globally competitive without a skilled and educated population.

Kentucky County-Level Bachelor's Degree or Higher, 2014-2018

(percent of individuals 25 years old or older)

Source: American Community Survey, 2018 5-Year Estimate, Table S1501
ASSOCIATE’S DEGREES

The associate’s degree is a terminal degree for many people, while others use it as a springboard toward a bachelor’s degree. Our analyses on the economic and societal benefits of postsecondary education shows that an individual with an associate’s degree or a bachelor’s degree will, on average, have higher income, less unemployment, and better health outcomes—to name a few of the benefits afforded by higher education—than someone with lower levels of education. The percentage of prime working age adults between 25 and 54 years old in Kentucky with an associate’s degree is 9.7 percent. Among the competitor states, several have statistically significant lower percentages (i.e., MO, GA, IL, TN & VA), and this also includes the weighted average of the competitor states (9.4%) and the U.S. (9.2%). One competitor state, Mississippi, has a statistically significant higher rate than Kentucky. Nationally, 12 states are higher, 15 are lower, and 22 are statistically the same as Kentucky. New Jersey is the lowest at 6.8 percent and North Dakota is the highest at 15.7 percent.

Source: Estimated from 2019 American Community Survey 1-Year PUMS
Note: CS is the weighted average of the competitor states.
Being competitive in the global economy depends upon many things—including continuous innovation in products and services and having a highly skilled workforce. It is especially important to have a workforce with a high level of science, technology, engineering, and mathematics (STEM) training and expertise. The national average wage for all STEM occupations in 2018 was $93,130, nearly double the national average wage for non-STEM occupations ($51,440). And not only are wages nearly double for STEM occupations compared to non-STEM occupations, so too is the job growth rate. Employment in STEM occupations grew by 19.2 percent nationally, or nearly 1.5 million jobs, between May 2007 and May 2018, compared with 6.6 percent growth in the number of jobs overall. While remaining substantially below the competitor states and the U.S., the total number of science and engineering degrees conferred per 1,000 individuals from 20 to 24 years old in Kentucky has increased since 1997—from 8.1 to 15.5. By comparison, the competitor states (22.9) and the U.S. (24.3) awarded significantly more STEM-designated bachelor’s degrees in 2019. Over the last two decades, the percentage increase in these numbers is greater in the U.S. (122%) and the competitor states (113%) than in Kentucky (90%).

Source: Author’s analysis of Integrated Postsecondary Education Data System (IPEDS) data using 2013 designated CIP Codes to identify STEM degrees & U.S. Census data for population estimates
BRIGHT SPOT SCHOOLS

Every year a select group of Kentucky schools perform better than expected on measures of educational achievement. These measures include things like the percentage of elementary students who achieve proficiency or distinguished in reading, or the proportion of less-advantaged middle school students who show a similar level of competency on the math assessment. Using school-level data that includes educational and demographic factors over an eight-year period, we estimate an expected level of performance and then compare it to the actual performance for each school. There are two conditions that a school must meet in order to satisfy our definition as a “bright spot.” First, we evaluate all students on an outcome measure, such as K-PREP elementary mathematics outcomes, to assess whether a school exhibits better-than-expected performance at least once from 2011 to 2018 (see one example in the figure below). Second, while focusing on the same educational outcome measure, but for at-risk students (e.g., low-income or disabled students), we analyze the model residuals to assess whether a school exhibits a significant improvement in performance relative to expectations over the time period. In this case, we regress the residuals on year, and if year is positive and statistically significant, then it is improving relative to expectations over the time period. We identified 47 “bright spot” schools.

Source: Kentucky Department of Education, Data Sets, 2011-2012 to 2018-2019
Note: Dark green bars indicate presence of a “Bright Spot”
The 47 “bright spot” schools that performed better than expected from 2011 to 2018 are located in all regions of the state and 30 different counties, as illustrated in the county-level map below; these are diverse settings—urban-rural, east-west, distressed areas as well as prosperous ones The main point of the map below is to illustrate the wide geographical distribution of bright spots across the Commonwealth. The complete report, Kentucky Public Schools as Educational Bright Spots, is available online <http://cber.uky.edu/publications/research-report/2020/kentucky-public-schools-educational-bright-spots>. Each of the individual schools is listed in the full report.
ASSESSMENTS OF THE coronavirus’ impact on the energy sector, specifically whether the pandemic is likely to stymie or facilitate efforts to transition away from carbon and toward renewables, suggest that it depends on many factors within a country, such as the pandemic’s impact on the health, society, and economy of a country, and whether it has the ability to respond financially with investments in a new energy infrastructure.

At least one assessment views South Korea, Germany, Japan, and China as meeting two necessary conditions for continued efforts toward an energy transition; the impact on their societies has not been so severe that they are unable to focus on anything else except the pandemic, and they have sufficient financial resources, both public and private, to invest in the transition (Boston Consulting Group). Moreover, there are strong signals, such as the naming of a climate team, that the administration of President-elect Biden intends to place a high priority on clean energy jobs and environmental protection. Thus, suggesting that the world’s major political and economic powers will continue their efforts to develop alternative sources of energy, regardless of the coronavirus’ impact on their respective economies.

Compelled by financial concerns as well as environmental regulations, electric utility companies are gradually transitioning away from coal and toward natural gas as a fuel source. Natural gas accounts for 38.4 percent; coal, by comparison, accounts for 23.4 percent.

continued on the next page
The use of natural gas to produce electricity—and the concomitant decline in the use of coal—has been going on for about 20 years. In 1988, coal accounted for about 57 percent of the total megawatt hours generated and natural gas accounted for just over 9 percent.

Meanwhile, renewable energy continues to grow as an energy source. The U.S. Energy Information Administration (EIA) notes in its Annual Energy Outlook 2020 that the United States will become less reliant on coal and nuclear power over the next three decades while increasing its usage of natural gas and renewable energy. In the EIA’s base or reference case (one of several possible future outcomes), electricity generated from renewable sources increases from 19 percent in 2019 to 38 percent in 2050. Meanwhile, coal generated electricity production is expected to decrease from 24 percent to 13 percent.

According to a May 2020 article in The Wall Street Journal, the “U.S. Consumed More Renewables Than Coal for First Time in 134 Years,” reflecting the growth of renewable energy, and continued decline of U.S. coal power. The power of the global financial markets to impact the global energy portfolio suggests that no single entity can determine the future of energy generation—and the markets appear to be betting on renewables. Of Kentucky’s total energy production, only 7.7 percent is from renewable sources, but it is growing rapidly. The U.S. and competitor states are, by comparison, much higher at 12 and 14 percent, respectively, and also growing rapidly.

Business is embracing “green,” and the implications of a shifting energy landscape will be felt now and in the future as the Kentucky economy and labor markets are compelled to adapt and react. For example, Toyota, which employs approximately 8,000 individuals in Scott County, is encouraging its manufacturing plants to use increasing amounts of renewable and hydrogen energy as it pursues Environmental Challenge 2050, its corporate-level plan of zero CO₂ emissions. Toyota is not alone. Some of the largest corporate employers in Kentucky—GE, UPS, Ford, and Walmart—have environmental and energy plans to reduce greenhouse gases and use more renewable energy.

The changing economics of the coal industry have been widely publicized. Cheaper sources of energy, like natural gas and renewables, more stringent air-quality regulations, and weaker-than-expected demand for coal in Asia are leading to decreases in the amount of coal produced in Kentucky. Statewide coal production continued to decline in 2019 to 36 million tons, a 9 percent decrease from 2018; this marks the lowest level of recorded annual production since 1954. Moreover, as of September 2020, an estimated 3,800 persons were employed at Kentucky coal mines—the lowest level since modern employment records have been recorded (going back to 1927).
RENEWABLE ENERGY PRODUCTION

Renewable energy sources include biomass, geothermal, wind, solar, and hydropower. The U.S. Energy Information Administration (EIA) considers multiple future energy production scenarios. According to the EIA Annual Energy Outlook 2020, the United States will become less reliant on coal and nuclear power over the next three decades; in short, the U.S. is expected to move away from coal and nuclear while increasing its usage of natural gas and renewable energy. In the EIA’s base or reference case (one of several possible future outcomes), electricity generated from renewable sources increases from 19 percent in 2019 to 38 percent in 2050. Meanwhile, coal generated electricity production is expected to decrease from 24 percent to 13 percent. There could be important future economic implications for Kentucky as a result of this anticipated shift in energy production. Rising employment in solar, wind, and natural gas has coincided with the shift in energy generation by source. Because Kentucky lags behind in renewable energy production, as evidenced in the chart below, it is likely that it also lags behind in employment levels for this growing industry. Of Kentucky’s total energy production, only 7.7 percent is from renewable sources, but it is growing rapidly. The U.S. and competitor states are, by comparison, much higher at 12 and 14 percent, respectively.

Renewable Energy Production,
Kentucky, Competitor States, and the U.S., 1960 to 2018
(expressed as a percentage of total energy production)

Energy consumption is categorized into four broad sectors: industrial, commercial, residential, and transportation. Industry consumes the bulk of energy in Kentucky, accounting for 35 percent of the total consumption (2018). As noted in the Kentucky Department for Energy Development and Independence, 2017 Energy Profile, our state has large manufacturing operations like General Electric, Ford, and Toyota, as well as other “energy-intensive manufacturing processes including; aluminum smelting, iron and steel mills, paper mills, chemical production, and glass manufacturing.” By comparison, industrial consumption by the competitor states and the U.S. as a percentage of total energy consumption is 30 and 32 percent, respectively. The transportation sector in Kentucky is the second largest consumer of energy, accounting for 28 percent, compared to 27 and 28 percent in the competitor states and the U.S. The residential sector in Kentucky, the competitor states, and the U.S., consumes 21, 24, and 21 percent. And while the commercial sector in Kentucky accounts for only 15 percent, it represents 18 to 19 percent of total energy consumption for the competitor states and the U.S. Broadly speaking, these distributions suggest that public policies affecting energy usage will be disproportionately felt in Kentucky by industrial users.
ENERGY CONSUMPTION BY SOURCE

Of the four broad energy sources used in Kentucky—coal, natural gas, petroleum, and renewables—coal accounts for the majority of the total consumption, 38 percent (2018). In 2011, this percentage was over half at 52 percent. While the chart below represents energy consumption for all uses, Kentucky relies heavily on coal for electricity generation. According to the Kentucky Department for Energy Development and Independence, 2017 Energy Profile, “Coal accounts for 83 percent of Kentucky’s own electricity portfolio.” This is expected to change, however, given the many factors affecting coal usage, such as federal environmental regulations, aging coal generators, and low natural gas prices. The upshot is that Kentucky will become increasingly dependent upon natural gas for future electricity generation. By comparison, coal consumption by the competitor states and the U.S. as a percentage of total energy consumption is 19 and 13 percent, respectively, and is declining. Natural gas is about 20 percent in Kentucky (and rising), but much higher as well as rising in the U.S. (31%) and the competitor states (28%). The competitor states and the U.S.—as well as Kentucky—are moving away from coal and toward natural gas.

Kentucky Energy Consumption by Source, 2018
(consumption by fuel type)

- Coal, 38%
- Natural Gas, 20%
- Petroleum, 35%
- Renewables, 6%

Source: U.S. Energy Information Administration, State Energy Data 2018, Consumption
The vast majority of Kentucky coal is used to generate electricity. Of the 37.5 million tons of Kentucky coal distributed in 2019, roughly 31.6 million tons was distributed domestically among the four categories shown below: electric power sector; coke plant; commercial & institutional; and industrial plants (excluding coke). An additional amount of Kentucky coal is exported out of the country—roughly 3.9 million tons in 2019. Of the Kentucky produced coal that was consumed domestically in 2019, it is estimated that 86 percent went toward electric power generation. However, for a variety of reasons, electrical power plants are moving away from coal and toward natural gas as a fuel source (see the next page), and this has been a major factor in the decline of Kentucky’s coal industry.

Kentucky Coal Distribution, 2019
(domestic consumption by end-user type)

- Electric Power Sector: 86%
- Coke Plant: 2%
- Commercial/Institutional: 0.2%
- Industrial Plants (excluding Coke): 12%

Source: U.S. Energy Information Administration, Annual Coal Distribution Report 2019
NATURAL GAS SUPPLANTING COAL

The use of natural gas to produce electricity—and the concomitant decline in the use of coal—has been going on for about 20 years. In 1988, coal accounted for about 57 percent of the total megawatt hours generated and natural gas accounted for just over 9 percent. This was the high point for coal and the low point for natural gas when viewed over the 69 year period from 1949 to 2018. Since 1988, coal has been declining and natural gas has been increasing, as is readily evident by the line chart below. This is a watershed moment for coal. Natural gas has supplanted coal as the principal source of fuel for generating electricity in the United States—accounting for 38.4 percent; coal, by comparison, accounts for 23.4 percent. Nuclear is another major energy source of electricity in the U.S. at 19 percent. The fracking boom has made natural gas a more financially attractive source of fuel for generating electricity. Relatively cheap natural gas, the rising importance of renewable sources, which currently accounts for about 18 percent of total net electricity generation in the U.S., and the mounting environmental concerns surrounding coal-fired power plants, are making fundamental changes to the global energy market—which, of course, are being felt in Kentucky’s coal regions.

U.S. Electricity Generation, by Source, Coal and Natural Gas, 1988-2019
(percentage of total megawatt hours generated)

Source: Energy Information Administration, State Energy Data System
COAL PRODUCTION

The changing economics of the coal industry have been widely publicized. Cheaper sources of energy, like natural gas and renewables, more stringent air-quality regulations, and weaker-than-expected demand for coal in Asia are leading to decreases in the amount of coal produced in Kentucky. Statewide coal production continued to decline in 2019 to 36 million tons, a 9 percent decrease from 2018; this marks the lowest level of recorded annual production since 1954. The high point of coal production in the state was in 1990 when 179 million tons was mined in 40 Eastern and Western Kentucky counties. Coal production has been declining since that time, evidenced by the 2019 production total as well as the lower number of counties (25) reporting some level of production. The map below shows the 1990 and 2019 production levels, with every county except two—McLean and Morgan—experiencing a decline over the 29-year period. As is evident by the map, the declines in the Eastern Kentucky counties have been much steeper than those experienced in Western Kentucky. Coal production in the first three quarters of 2020 is down 36 percent compared to the first three quarters of 2019—continuing the downward decline in coal production evident for the last several years.

Source: U.S. Energy Information Administration, Annual Coal Report, various years.
In 2019, an estimated 6,257 persons were employed at Kentucky coal mines. One has to go back 120 years to find an employment level this low; there were an average of 6,399 coal miners in the state in 1898. While Kentucky mines a significant amount of coal in both Western and Eastern Kentucky, the bulk of the job losses have been in Eastern Kentucky. When viewed within the context of the state’s wider economy, mining employment and coal mining employment are 0.58% and 0.2% of total employment, respectively. Similarly, mining production accounts for 0.9% of Kentucky’s gross domestic product. While the effects of declining production and loss of jobs are small relative to the size of the state’s overall economy, the communities where these jobs are concentrated have been hit extremely hard. According to the latest employment numbers from the Kentucky Energy and Environment Cabinet, in the third quarter of 2020 (July to September), coal mining employment was 2,151 in Eastern Kentucky and 1,682 in Western Kentucky. These employment numbers include all employees engaged in production, preparation, processing, development, maintenance, repair, shop or yard work at mining operations, mining operations management and all technical and engineering personnel (these numbers also include office workers).

![Kentucky Mining Employment & Production, 1990-2019](image)

Source: Bureau of Economic Analysis & Energy Information Administration, Annual Coal Report, various years, and Kentucky Coal Facts, various years
Energy Consumption per GDP

Kentucky has an energy intensive economy. To generate $1 in state gross domestic product, Kentucky consumes about 8,390 Btu (2018). By comparison, the U.S. average is around 4,900 Btu and the competitor state average is 5,720 Btu. This difference is driven, in part, by Kentucky’s larger than average manufacturing sector, which, of course, depends greatly upon energy as a production input. One implication of this higher dependence on energy as an economic input is that, compared to most of the competitor states, Kentucky’s economy is more sensitive to energy prices.

Source: Calculated using data from the U.S. Energy Information Administration and Bureau of Economic Analysis
Energy Efficiency

This variable is an indicator of energy efficiency and conservation. It is the number of megawatt hours of electricity sold to all customers; it is inclusive of residential, commercial, industrial, and transportation sales and customers. It is not a perfect measure of energy efficiency, since it is affected by the industrial mix in a state. If we limited this to only residential sales and customers, then Kentucky’s energy usage/efficiency improves somewhat when compared to the competitor states and the U.S. For example, while Kentucky has the third highest usage when including all sales and customers (see below, comparing competitor states only), it is the seventh highest when only examining residential usage/efficiency. Kentucky’s megawatt usage per residential customer is 13.3 (in thousands of megawatt hours), which is well below Tennessee (14.6), the highest competitor state; Illinois is the lowest competitor state using the residential measure (8.5). The residential only competitor state average is 12.3 while the U.S. average is 10.6—both lower than Kentucky’s residential per customer usage (13.3). Part of the reason for Kentucky’s higher-than-average per customer usage at the residential level is surely due to the state’s relatively low electricity costs.

Megawatt Hours per Energy Customer, 2019, Kentucky, Competitor States, and the U.S.
(Thousands of megawatt hours)

Source: Calculated using data from the U.S. Energy Information Administration

University of Kentucky
Frequently cited as an important factor to recruit new industries to Kentucky as well as keep existing industries competitive, electricity prices here are consistently below the U.S. and competitor state averages. Kentucky’s industrial rates are lower because of an abundance of coal and coal-fired power plants in the state and region. However, the average retail price of electricity to industrial customers increased in Kentucky by 99 percent from its nadir of 2.8 cents in 1997 to 5.6 cents in 2019. As prices have increased so too have the worries that Kentucky is losing its comparative advantage in low-cost utility rates; price increases for the U.S. and competitor states during the same time period have been about 50-54 percent compared to Kentucky’s 99 percent. Nonetheless, in 1990 Kentucky had the seventh lowest industrial rate in the country and in 2019 the seventh lowest—trailing Louisiana, Montana, New Mexico, Oklahoma, Texas, and Washington. And among the competitor states Kentucky’s industrial rates are the lowest. Kentucky’s annual rate in 2018—at 5.6 cents per kilowatt-hour—was well below the U.S. (6.8) and competitor states (6.4).
RESIDENTIAL ELECTRICITY COSTS

According to the U.S. Census Bureau, Consumer Expenditure Survey, the typical “consumer unit” had $63,036 in average annual expenditures in 2019—with annual electricity expenses of $1,472. In the South Region of the U.S.—where Kentucky and eight of the competitor states are located—average annual expenditures were $58,622 and annual electricity expenses were $1,724. Electricity costs range in these two examples from 2.3 to 2.9 percent of total expenditures. Using data from the U.S. Energy Information Administration, residential average monthly electricity bills, among the competitor states, ranged from a low of $92 in Illinois to a high of $150 in Alabama. At $120, Kentucky’s average monthly bill is between the U.S. and competitor states averages. Like industrial customers of electricity, Kentucky’s residential customers enjoy somewhat lower rates than most competitor states.

Residential Average Monthly Electricity Bill, 2019, Kentucky, Competitor States, and the U.S.

(current dollars)

Source: U.S. Energy Information Administration
Note: The competitor states average (CS) is not a weighted average.
The typical American “consumer unit,” what most would consider the average household, spent $63,036 on various products and services in 2019 according to the Consumer Expenditure Survey; “gasoline and motor oil” accounted for $2,094 of the total—about 3.3 percent of the total; this represents a decline from recent years when it was 5.1 percent in 2013, 4.6 percent in 2014, and 3.7 percent in 2015. In 2019, the average price for a gallon of gas in the U.S. was about $2.69 (in constant 2019 dollars)—much higher than the inflation adjusted price of $1.74 in 1994, but significantly lower than $3.89 in 2012.

Source: Energy Information Administration, State Energy Data System
The U.S. Global Change Research Program, upon the release of its *Fourth National Climate Assessment* in late 2018, threw the interrelationship between the environment and the economy into stark relief. Mandated by The Global Change Research Act of 1990, the report on climate change is delivered to Congress and the President no less than every four years. They wrote that “climate change creates new risks and exacerbates existing vulnerabilities in communities across the United States, presenting growing challenges to human health and safety, quality of life, and the rate of economic growth.” They go on to say, “without substantial and sustained global mitigation and regional adaptation efforts, climate change is expected to cause growing losses to American infrastructure and property and impede the rate of economic growth over this century.”

Public policy debates about the current and future status of Kentucky’s coal industry illustrate the connections between the economy, the environment, and global energy markets—including the tensions between them. The Shaping Our Appalachian Region (SOAR) initiative to rejuvenate the Eastern Kentucky economy, in the wake of the precipitous decline of the coal industry, illustrates in its *Regional Blueprint for Economic Growth* how the state will be forced to reckon with, and ultimately reconcile, potentially competing policy objectives. The *Blueprint* calls for an increase in natural resource extraction while simultaneously establishing the region as

continued on the next page
Our economic development policies and practices can, and do, affect the quality of the air, water, land, and other environmental assets of the state. At the same time, a body of literature has emerged demonstrating how community amenities, such as a clean and beautiful environment, are used as a tool for attracting and retaining entrepreneurs and innovators—who can also be job creators. Environmental regulations are important considerations for CEOs exploring sites for industrial expansion or relocation—but so are “quality of life” considerations, which might include a clean environment. For example, choosing from a list of 28 different factors, ranging from labor costs to environmental regulations, the single most important factor for respondents to the 2018 Area Development Site Selection Survey was the availability of skilled labor, evidenced by 90.5 percent ranking it as either “important” or “very important.” By comparison, “environmental regulations” ranked 16th on the list at 69.9 percent while “quality of life” factors ranked 6th at 82.8 percent.

At a time when the broad-based threats to the environment resulting from climate change appear to be gaining traction as an important public-policy issue around the globe, the typical Kentuckian is breathing cleaner air, drinking cleaner water, and being more responsible with solid waste than ever before.
Toxic pollutants can cause cancer or other serious health effects, such as reproductive or birth defects, as well as adverse ecological and environmental consequences. The Environmental Protection Agency (EPA) provides data to help communities identify chemical disposal facilities and other toxic release patterns that warrant public vigilance. Combined with hazard and exposure information, these data can be valuable in risk identification. Given that toxic releases are often by-products of manufacturing processes, it is not surprising that Kentucky, which is home to an above-average manufacturing base, typically exceeds the U.S. average in toxic releases. In 2019, Kentucky reported 9.9 pounds of toxic releases per capita; this is a decrease from 11.4 pounds in 2018. The most recent data show that Kentucky trails the national average (10.3 pounds), and is below the competitor states of Mississippi (18.9), Indiana (18.3), Alabama (16.0), West Virginia (15.1), and Tennessee (12.1).

Note: CS is the weighted average of the competitor states.

SOLID WASTE

Beginning in 2002, state law required waste haulers and recycling haulers to register and report to each county in which they provide service, thereby providing data on the number of households that participate in municipal solid waste collection (MSW). The 2016 and 2017 statewide household participation rates for MSW collection were around 85.5 percent. The Kentucky Division of Waste Management (DWM) estimates that another 5-10 percent of households either legally self-haul their waste to transfer stations or are otherwise not counted in these numbers because they use dumpsters in multi-unit housing complexes. Consequently, the real percentage of households participating in municipal solid waste collections is likely 90 to 95 percent according to the DWM. The remaining 5 to 10 percent of households are thought to illegally dump their waste. The DWM notes in its 2018 Annual Report that household municipal solid waste participation remains steady in 2017.

![Kentucky Households Participating in Municipal Solid Waste (MSW) Collection, 2003-2017](image)

Source: Kentucky Division of Waste Management Annual Reports, various years
According to the Kentucky Division of Waste Management, Kentuckians recycled 31.7 percent of common household recyclables in 2019 (e.g., aluminum, cardboard, steel, plastic, newspaper, glass, and paper). As one can see in the figure, the percentage of generated waste that is recycled has climbed steadily over the last two decades—but dropped sharply in 2019 due to COVID-19 and weakness in the global commodities market for recycled material. And, according to the U.S. Environmental Protection Agency (EPA), Americans generated about 267.8 million tons of trash in 2017 and recycled (or composted) approximately 94 million tons of this material—resulting in a 35.2 percent recycling rate. Americans generate around of 4.51 pounds of individual waste per person each day and recycle or compost 1.6 pounds of it.

Recycling Rates, Kentucky and the U.S., 1994-2019
(As a Percentage of Waste Generated)

Source: Kentucky Division of Waste Management, Annual Reports, various fiscal years, and U.S. EPA
AIR QUALITY

The Kentucky Division for Air Quality reports that Kentuckians are breathing cleaner, healthier air. The Division points out that “this improvement is a direct result of reduced air pollution. For example, emissions of sulfur dioxide (SO\(_2\)) from Kentucky coal-fired power plants totaled 1.5 million tons in 1976. In 2015, those emissions had dropped to 131,696 tons – a remarkable 91 percent reduction.” The Division notes that the “decrease is all the more dramatic considering Kentucky’s population and economy have grown significantly during that same time period. New air pollution control technologies, improved vehicle fuel economy, and a growing emphasis on energy efficiency have all contributed to cleaner air.” The pollutants shown in the figure below are Ozone (O\(_3\)), Sulfur Dioxide (SO\(_2\)), and Nitrogen Dioxide (NO\(_2\)). While individual pollutants oscillate from year to year, overall the trend shows a decline in pollution levels from 1985 to 2019. The pollutants are shown in terms of parts per million (ppm). Other important air pollutants, expressed in both parts per million and micrograms per cubic meter (µ/m\(^3\)) are shown on the facing page. This graph shows generalized pollution trends through time. It does not show trends for specific sites nor does it demonstrate attainment for any particular area. While individual pollutants may spike in certain years, overall trends show declines in pollution levels.

![Kentucky Air Quality Trends, 1985 to 2019](image)

Source: Kentucky Energy and Environment Cabinet, Division for Air Quality
As noted on the facing page, the Kentucky Division for Air Quality reports that Kentucky’s air is getting cleaner. The pollutants shown in the figure below are Carbon Monoxide (CO), Particulate Matter (PM$_{10}$), Fine Particulate Matter (PM$_{2.5}$). And, just like with Ozone (O$_3$), Sulfur Dioxide (SO$_2$), and Nitrogen Dioxide (NO$_2$) shown on the previous page, the pollutants in the graph below have been declining gradually over the time period shown. This graph shows generalized pollution trends through time. It does not show trends for specific sites nor does it demonstrate attainment for any particular area. While individual pollutants may spike in certain years, overall trends show declines in pollution levels.

Kentucky Air Quality Trends, 1985 to 2019

(PM$_{2.5}$, PM$_{10}$, CO)

Source: Kentucky Energy and Environment Cabinet, Division for Air Quality
LEAD & COPPER RULE VIOLATIONS

The United States enjoys one of the safest and most reliable supplies of drinking water in the world. Clearly, the Safe Drinking Water Act of 1974 plays an important role in maintaining high standards for quality. While the water supply is generally violation-free, in 2019 there were about 71,700 violations of the Safe Drinking Water Act among community water systems that served around 78 million people, which represents around 24 percent of the U.S. population. Of these 71,700 violations, an estimated 7,900 were violations of the Lead and Copper Rule, affecting approximately 16.5 million people. Lead water pipes have been used for many years, but exposure to lead is extremely serious and can cause life-altering consequences, especially for children. A 2017 NBER Working Paper by Anna Aizer and Janet Currie, *Lead and Juvenile Delinquency: New Evidence from Linked Birth, School, and Juvenile Detention Records*, finds strong connections between childhood lead exposure and antisocial behavior, leading to increased school suspension rates as well as increased incarceration rates later in life. With three violations of the Lead and Copper Rule in 2019, Kentucky experienced a relatively small number, affecting an estimated 0.7 percent of the state population. The competitor state and U.S. averages were higher, at 2.8 and 5 percent, respectively.

Population Served by a Community Water System with a Safe Drinking Water Violation of the Lead & Copper Rule, Kentucky, Competitor States, and the U.S., 2019

Source: Author’s analysis of EPA SDWIS data.
Lead poisoning has serious health consequences. According to the Mayo Clinic, “Exposure to even low levels of lead can cause damage over time, especially in children. The greatest risk is to brain development, where irreversible damage may occur. Higher levels can damage the kidneys and nervous system in both children and adults. Very high lead levels may cause seizures, unconsciousness and possibly death.” Using a method developed by epidemiologists from the Washington State Department of Public Health, we produced a county-level map of Kentucky showing the *estimated* relative risk for lead exposure. This method, which has been widely embraced by environmental health experts associated with the Center for Disease Control and the American Public Health Association, uses two variables to assign relative risk: the age of the houses (which predicts the likelihood of lead paint) and poverty; the environmental health literature finds that kids are more likely to come into contact with lead in older houses and that living in conditions of poverty elevates the risk. Risk levels are not uniform within a county; that is, not everyone in Jefferson County will be at the highest level of risk. Likewise, not everyone in Warren County will be at the lowest level. Instead, the map illustrates the *estimated* average lead risk level at the county level.

THE THREE LEADING CAUSES OF death in Kentucky (2018 data) are heart disease (10,697), cancer (10,135), and chronic lower respiratory disease (3,421). Also, in 2018, an estimated 1,315 Kentuckians died from a drug overdose; the primary culprit in drug overdose deaths is opioid abuse, especially heroin and fentanyl. So far, as of December 19, 2020, there are 2,371 deaths attributed to COVID-19 in the state. While the coronavirus garners most of our attention, from a health perspective there are other health conditions that account for more sickness and death.

Kentucky’s health short-comings are well-known—America’s Health Rankings 2020, delineates our high rates of drug overdose deaths, chronic disease, and disability, by ranking the state 46th on health outcomes and 48th on health behaviors. It lists areas considered to be strengths (i.e., high percentage of high school graduation, high percentage of fluoridated water, low violent crime rate), as well as its challenges (i.e., high prevalence of multiple chronic conditions, high premature death rate, high prevalence of cigarette smoking).

The 1,315 drug overdose deaths in Kentucky in 2018 was down from 1,563 in 2017. While the coronavirus and opioids get the headlines, chronic diseases are responsible for 7 of 10 deaths each year and drive most of the nation’s health care costs. Among Kentucky’s prime working-age adults, smoking (31%), obesity (40%), and physical inactivity (30%) put many at risk for chronic disease. Overall, around 31 percent of Kentucky’s prime working-

continued on the next page
age adults exhibit multiple chronic disease-causing behaviors, and these risk factors lead to higher absenteeism at work and increase employer costs. The Milken Institute has estimated that the economic toll of chronic disease on the Kentucky economy measured in the billions of dollars, reflecting the cost of treating avoidable medical expenses as well as the resulting lower labor force productivity and subsequent lower economic growth rates.

Kentucky’s poor health outcomes have large economic effects and societal consequences. At the most basic level, good health enables workers to be more productive. Indirectly, higher levels of health facilitate, for example, more education and schooling, which directly affects economic outcomes. Conversely, poor health can lead to premature death, lower workforce participation, higher public assistance costs, and less-than-optimal worker productivity. Studies have found, for instance, that labor time lost due to health reasons totals in the billions of dollars per year in lost economic output. Moreover, given the importance of workforce quality on firm location decisions, communities with high disability rates and poor health status are at a competitive disadvantage. For these reasons, investments in improving the health outcomes of individuals and communities can and do have vital and long-lasting economic benefits.

Investments to improve health outcomes in Kentucky can exert important economic benefits. Our analyses suggest that opioid abuse has reduced Kentucky’s labor force participation rate by 1.3 to 3.1 percentage points. This translates to a loss of 23,100 to 55,200 workers, $1.0 to $2.8 billion in earnings, and $63 to $169 million in state tax revenues—a considerable economic toll. When we analyze the economic consequences of smoking on Kentucky, we identify effects in three areas—reduced wages for smokers who work, reduced employment among smokers (a loss of 28,500 workers) and increased premature deaths for smokers. Combined, the impact of smoking in Kentucky reduces total earnings by $1.8 billion to $2.9 billion annually and its state tax revenues by $111 million to $176 million annually. Likewise, there are significant costs associated with other chronic diseases, like diabetes.

Factors like job stability, educational attainment, and neighborhood safety exert a strong influence over health outcomes. By addressing the place-based, social determinants of health in Kentucky communities, policy makers have the opportunity to improve the health of, and by extension economic outcomes for, citizens of the Commonwealth. The findings are clear—poor health can have deleterious economic effects, while good health can improve earnings, employment, and one’s quality of life.
Social Determinants of Health

The health of individuals is affected by many factors, including, of course, individual behaviors regarding diet and exercise, but also including community characteristics. The U.S. Department of Health and Human Services advances a “place-based” framework under the auspices of the Healthy People 2020 initiative to explain and understand the factors affecting health outcomes. This framework includes five principal areas that constitute the social determinants of health: economic stability; education; social and community context; health and health care; and neighborhood and built environment. Using 24 separate factors organized into these five categories, we estimate the strength of the social determinants of health at the county level. Using a technique known as principal component analysis, we rank Kentucky’s 120 counties into quartiles, or four equal groups, by analyzing variables that include, but are not limited to, the poverty rate, the rate of successful transition to adult life after high school graduation, the number of community associations, the number of various types of health care providers, and environmental conditions such as air and water quality. Together, these factors reflect critical elements in our social and physical environments that affect individual health. Counties in Central and Western Kentucky show the best outcomes, with less favorable outcomes in Eastern Kentucky.

Social Determinants of Health by Kentucky County

Source: Calculated by the author from multiple data sources. Refer to the Notes & Sources.
COVID-19 Deaths

The COVID-19 pandemic is arguably the most significant test of the U.S. health system in more than a century. With over 16 million confirmed cases in the United States and over 300,000 deaths, COVID-19 has levied a significant cost (Centers for Disease Control, 2020); Kentucky has experienced over 230,000 cases and over 2,500 deaths. The top ten causes of death in the United States are led by heart disease and cancer, which account for most deaths. However, COVID-19 is working its way up the list of leading causes of death—currently the third leading cause. Like many diseases, this one is not distributed evenly across demographic groups: older adults, racial and ethnic minorities, and low- to middle-income groups have experienced significantly higher death rates than other populations. The county-level map below reflects the period from late January to late October 2020, and shows COVID-19 deaths per 100,000 at the Hospital Referral Region. Because we have aggregated deaths at the Hospital Referral Region level, there is wide homogeneity among counties within states and regions—yet significant heterogeneity across the United States overall.

[Map showing COVID-19 deaths per 100,000 population, aggregated at the Hospital Referral Region]

Source: CDC Provisional Death Counts, as of 10/21/20. Deaths reported for county of deceased; all county-level deaths pooled at the Hospital Referral Region (HRR) by author.
From late January 2020 to early December 2020, there were over 16 million confirmed coronavirus cases in the United States, with over 230,000 in Kentucky. The map below shows the intensity of these cases at the county level, when controlling for population size. The New England counties are mostly in the lowest quintile, while the upper Midwest and Mountain West counties are predominately in the highest quintile. Kentucky’s 120 counties range across the spectrum, with Lee County at 146 confirmed cases per 1,000 population in the highest quintile nationally, and Menifee County, for example, with 22.3 confirmed cases per 1,000 population, in the lowest quintile. Kentucky’s two most populated counties, Jefferson and Fayette, have confirmed case rates of 55.2 and 61.7, respectively. Overall, there are three Kentucky counties in the highest quintile nationally (i.e., over 70), Lee, Elliott (91.3), and Monroe (75.1). Notably, Morgan and Wolfe Counties, which border Elliott and Lee Counties, respectively, are in the lowest quintile nationally, with just about 30 confirmed cases per 1,000 population.

While the COVID-19 pandemic is the prime example, hurricanes, fires, and widespread flooding over the last few years show how disasters and other health emergencies affect the economy, businesses, and communities. Results from the National Health Security Preparedness Index clearly demonstrate that health security is not simply a governmental responsibility. Individual businesses and the private sector at large contribute to many of the health security measures that comprise the Index, such as offering paid time off and telecommuting options for employees, promoting vaccination coverage in the workforce, supporting workers who train and volunteer for their local Medical Reserve Corps, and participating in emergency planning and exercises organized by regional healthcare coalitions and networks. Other ways businesses can strengthen health security include: leveraging the supply chain to prepare for events by collaborating on contingency plans to avoid large-scale business disruptions; and increasing awareness about the need for preparedness plans among the business community. The map below shows that Kentucky is within the national average—6.7 on a 10-point scale—for health security and preparedness, suggesting that improvement is possible.
This county-level version of the health security preparedness index, shown in the map below, is derived from several of the measures used for the state-level index shown on the facing page; this county-level index is constructed from 84 measures, many of which come from the 130 measure state-level index. This county-level version of the index reveals that Kentucky’s Urban Triangle region, as well as other counties with a metropolitan area, evidence higher levels of health security preparedness than counties located in more rural areas. Given the necessity of closer proximity to health care resources, reliable high-speed internet, and a more robust governmental infrastructure, among other factors, it is not surprising that, on average, metropolitan counties demonstrate higher levels of preparedness and capability than rural and slightly rural counties.

Note: Map generated on Nov. 17, 2020, from data produced Oct. 19, 2020 (BETA 84 measures)
Drug Overdose Death Rate

The United States is in the midst of a public health crisis due to drug misuse and abuse, resulting in significant economic consequences. Drug overdoses are now the leading cause of death among Americans under 50. Much of this, but not all, is fueled by opioids. However, while opioids account for a growing number of drug overdose deaths, there are many other contributing substances. Over 71,000 Americans died from drug overdoses in 2019. Kentucky, unfortunately, has one of the highest drug overdose death rates in the country. In 2018, an estimated 30.9 Kentuckians per 100,000 population died from a drug overdose (age-adjusted death rate). As can be seen in the map below, Kentucky is among the states in the highest quartile nationally. Focusing only on the opioid crisis, researchers at Altarum, a nonprofit health research and consulting institute, have estimated that its costs exceeded $1 trillion from 2001 to 2017. In the near future, the crisis is expected to cost an additional $500 billion by 2020 (Altarum, February 2018). These costs include lost wages, lower productivity, lost tax revenue, and higher government expenditures—all of which have consequences for the economy.

Drug Overdose Death Rate, 2019
(per 100,000 population, crude rate)

The number of Kentuckians dying from a drug overdose is beginning to arc downward. The primary culprit in drug overdose deaths is opioid abuse, especially heroin and fentanyl. According to CDC estimates, there were 1,315 drug overdose deaths in Kentucky during 2018, down from 1,563 in 2017. The U.S. drug overdose death rate (age adjusted) increased by a factor of 3.5 from 1999 to 2018, but in Kentucky it increased by a factor of 6.4. The Kentucky Office of Drug Control Policy reports in the 2019 Overdose Fatality Report that the five Kentucky counties with the highest age-adjusted rates are Estill (81), Grant (77.4), Boyd (64.6), Greenup (62), and Anderson (51). These drug overdose death rates put significant financial stress on local governments and exert an economic impact on communities. For example, despite the considerable uncertainty regarding the extent to which opioids reduce labor force participation, our analyses suggest that opioid abuse has reduced Kentucky’s labor force participation rate by 1.3 to 3.1 percentage points. This translates to a loss of 23,100 to 55,200 workers, $1.0 to $2.8 billion in earnings, and $63 to $169 million in state tax revenues—a considerable economic toll.

![Drug Overdose Death Rates, Kentucky and the U.S., 1999-2018](chart)

Source: Centers for Disease Control and Prevention (CDC), National Center for Health Statistics, Multiple Cause of Death 1999-2018 on CDC WONDER Online Database.
ADULT SMOKERS

Kentucky has one of the highest adult smoking rates in the nation. Consequently, smoking-related causes of death, including lung cancer and heart disease, exert a disproportionately high cost. With a smoking rate among prime working-age adults (25 to 54 years old) of 30.7 percent, Kentucky is well above the national average of 18.4 percent. Kentucky is statistically tied with Louisiana (27.5%) and West Virginia (33.3%) for the highest rate. The other 47 states, DC, as well as the competitor states and U.S. average, have statistically significant lower rates. The economic costs associated with smoking are high. A 2019 report from the Center for Business and Economic Research (CBER), *The Effect of Smoking on Kentucky’s Workforce*, finds that smoking leads to poorer labor market outcomes. Smokers are more likely to be unemployed, earn lower wages, and die prematurely than non-smokers. These negative labor market effects reduce economic activity and lower tax revenues, adding to the social costs and fiscal impact that smoking imposes. Combined, these three effects—reduced wages for smokers who work, reduced employment among smokers, and increased premature deaths for smokers—reduce Kentucky’s total earnings by $1.8 billion to $2.9 billion annually and its state tax revenues by $111 million to $176 million annually.

![Prime Working-Age Adults Who are Current Smokers, Kentucky, Competitor States, and the U.S., 2011-2019](image)

Source: Author’s analysis of CDC Behavioral Risk Factor Surveillance System data, various years
Obesity can lead to heart disease, stroke, type 2 diabetes, and certain types of cancer. The Centers for Disease Control and Prevention (CDC) notes that the medical care costs of obesity in the United States are in the billions of dollars. One consequence of obesity—diabetes—is addressed in a 2019 Center for Business and Economic Research (CBER) report, *The Economic Impact of Diabetes in Kentucky*. It notes that the percentage of Kentucky adults diagnosed with diabetes has increased from 9.9 percent in 2007 to 12.8 percent in 2017. Currently, approximately 441,000 Kentucky adults have diabetes. Research shows that diabetes is associated with lower employment and earnings. In Kentucky, diabetes reduces employment by approximately 15,700 workers, representing a loss of $551.3 million in earnings and $33.1 million in state tax revenue annually. With the number of obese adults in Kentucky at an all-time high, the economic impact of diabetes in Kentucky will likely increase. Currently, about 39.7 percent of prime working-age adults (25 to 54 years old) in Kentucky are obese, about 6 percentage points above the national average of 33.8 percent. Only Mississippi has a higher obesity rate (44.6%) than Kentucky, while 19 states are statistically no different from Kentucky. The other 29 states, DC, as well as the competitor states and U.S. average, have statistically significant lower rates.

Source: Author’s analysis of CDC Behavioral Risk Factor Surveillance System data, various years
RISK BEHAVIORS AND CHRONIC DISEASE

According to the Centers for Disease Control and Prevention (CDC), more than 75 percent of health care costs are due to chronic conditions such as heart disease, cancer, stroke, diabetes, and arthritis. Many patients have multiple chronic conditions and their care costs up to seven times as much as those with one chronic condition. Much of the chronic disease is caused by four preventable health risk behaviors—lack of exercise, poor nutrition, smoking, and heavy alcohol consumption. When compared to the U.S. as well as states that are widely considered to be Kentucky’s competitors for economic development prospects, prime working-age (25 to 54 years old) Kentuckians are more likely to smoke, be obese, and not engage in regular physical activity—but look similar to the U.S. and competitor states with respect to heavy alcohol consumption.

Four Risk Behaviors that Contribute to Chronic Disease, U.S., Competitor States, and Kentucky, 2019
(prime working-age adults)

<table>
<thead>
<tr>
<th>Adults, 25 to 54 years old</th>
<th>US (%)</th>
<th>CS (%)</th>
<th>KY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Smoker</td>
<td>18*</td>
<td>22*</td>
<td>31</td>
</tr>
<tr>
<td>Obese</td>
<td>34*</td>
<td>37*</td>
<td>40</td>
</tr>
<tr>
<td>Lack of Physical Activity</td>
<td>25*</td>
<td>27*</td>
<td>30</td>
</tr>
<tr>
<td>Heavy Alcohol Consumption</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Source: Authors’ analysis of data from Centers for Disease Control and Prevention (CDC), Behavioral Risk Factor Surveillance System Survey Data, Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2019

Note: The competitor states are AL, GA, IL, IN, MO, MS, NC, OH, SC, TN, VA, & WV.

*These percentages are statistically different from the Kentucky percentages (alpha=.05).
Overall, 31 percent of Kentucky’s prime working-age (25 to 54 years old) adults engage in multiple chronic disease causing behaviors. About 30 percent have none of the risk factors of smoking, obesity, inactivity, or heavy drinking, and 39 percent have one. However, 23 percent have two and about 7 percent exhibit three or four. Much of chronic disease is caused by these four risk factors and it is estimated that 75 percent of health care costs are due to chronic conditions such as heart disease, cancer, stroke, diabetes, and arthritis. Compared to the competitor states and the U.S., prime working-age adults in Kentucky are more likely to have one or more chronic disease risk factors. These risk factors, particularly smoking, physical inactivity, and obesity, are linked to higher absenteeism and employer costs. Research published in 2016 found that “Absenteeism costs associated with chronic diseases and health risk factors can be substantial. Employers may incur these costs through lower productivity, and employees could incur costs through lower wages.” This association brings the health status of the state’s workers to the forefront when considering strategies for improving Kentucky’s economic prospects.

Number of Key Chronic Disease Causing Behaviors, 2019, Kentucky, Competitor States, and the U.S.
(percent of prime working-age adults, 25 to 54 years old)

Source: Author’s analysis of Behavioral Risk Factor Surveillance System data
CHRONIC DISEASE BY COUNTY: NUMBER

Over one-quarter of Kentucky adults 18 and older (26.3%) exhibit multiple chronic disease causing behaviors. These behaviors or resulting outcomes include smoking, obesity, inactivity, and heavy drinking. We estimate that 39 percent have one of these behaviors, 22 percent have two, and 5 percent exhibit three or four. The map below and the one on the next page illustrate different facets of this problem. Because most of the state’s population live in the urban triangle region, the vast majority of the people at risk for chronic disease are concentrated in this region—even though they represent a comparatively lower percentage of the population in these counties. Jefferson County has the highest number of adults at risk for chronic disease at nearly 371,000. When developing approaches and allocating resources to address chronic disease across Kentucky, it is important to consider the sheer number at risk as well as the percentage.

Kentucky Adults Exhibiting Behaviors Putting Them At Risk for Chronic Disease, 2014-2018
(estimated number of adults 18 and older)

Source: Author’s analysis of data from Kentucky Department for Public Health (KDPH) and Centers for Disease Control and Prevention (CDC), Behavioral Risk Factor Surveillance System Survey Data. Frankfort, Kentucky: Cabinet for Health and Family Services, Kentucky Department for Public Health, 2014 to 2018
A very different picture of chronic disease is shown on this map. While the map on the previous page shows that the estimated absolute number of those at risk for chronic disease is relatively small in Eastern Kentucky, it is relatively large when viewed as a percentage of the county population. Likewise, the number at risk in the urban triangle is quite large, but it is comparatively small as a percentage of the population.

Kentucky Adults Exhibiting Behaviors Putting Them At Risk for Chronic Disease, 2014-2018
(estimated percentage of adults 18 and older)

Source: Author’s analysis of data from Kentucky Department for Public Health (KDPH) and Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey Data. Frankfort, Kentucky: Cabinet for Health and Family Services, Kentucky Department for Public Health, 2014 to 2018
CHRONIC DISEASE RISK BY AGE GROUP

The chronic disease risk does not change much across the age groups for those 25 and older. An estimated 70 percent of Kentucky adults demonstrate at least one of the four behaviors that put them at risk of developing a chronic disease—smoking, obesity, physical inactivity, or heavy alcohol consumption—compared to 63 percent in the competitive states and 59 percent in the United States. These rates have been consistent and stable for at least the last decade—an indication of how difficult it is to change chronic disease causing activities, not only in Kentucky but across the United States.

Chronic Disease Risk by Various Age Groups, Kentucky, Competitor States, and the U.S.
(percent of individuals at risk for chronic disease, 2019)

Source: Author’s analysis of Behavioral Risk Factor Surveillance System data
Due to a concern of exposing oneself to others who might be infected with the coronavirus, some individuals have not sought medical care for conditions unrelated to COVID-19. A recent U.S. Census survey included a question that is designed to provide a deeper understanding of the prevalence of foregone care for other health issues during the pandemic. This item reports whether the respondent did not get medical care for a non-COVID-19 condition during the past four weeks as a result of the COVID-19 pandemic. This variable is part of a battery of five supplemental questions added to the Current Population Survey (CPS) basic monthly survey in May of 2020 to measure the impact of the COVID-19 pandemic on the labor force; we use the CPS-IPUMS variable COVIDMED to estimate the responses below, which cover the period from May to October. An estimated 2.9 percent of Kentuckians reported that they did not get medical care for a non-COVID-19 condition due to the pandemic, roughly the same percentage as the competitor states (2.8%) and the U.S. overall (3.0%). However, given the higher incidence and greater risk for chronic disease in Kentucky compared to the competitor states and the U.S. overall, any foregone medical care might have an outsized impact in Kentucky compared to most other states.

Foregone Medical Care Due to COVID-19 Pandemic
Kentucky, Competitor States & the U.S.
(May to October 2020)

Oral Health

The oral health of our citizens is important for several reasons. First, it is important as a quality-of-life issue; healthy teeth and gums can translate into a better appearance, higher self-esteem, and more self-confidence, which are key to a better quality of life. Second, missing and decayed teeth or diseased gums can make it difficult to find employment and perform well on the job, adversely affecting the pocketbooks of individuals and families as well as the state’s capacity to realize economic development and increase prosperity. Third, and perhaps most important, missing teeth, inflamed gums, and cavities often make it difficult to eat a balanced diet, and increasingly research links poor oral health to illness, chronic disease, and even early mortality. While real public health gains have been made in oral health here, Kentucky’s overall status can best be termed as slightly below average. Compared to the competitor states (63.2%) and U.S. overall (65.4%), a statistically significant lower percentage of Kentucky prime working-age adults (59.2%) responded “None,” when asked this question: *Not including teeth lost for injury or orthodontics, how many of your permanent teeth have been removed because of tooth decay or gum disease?*

<table>
<thead>
<tr>
<th>Oral Status</th>
<th>US (%)</th>
<th>CS (%)</th>
<th>KY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing 1 to 5 permanent teeth</td>
<td>27.5</td>
<td>27.7</td>
<td>28.7</td>
</tr>
<tr>
<td>Missing 6 or more teeth, but not all</td>
<td>5.3*</td>
<td>6.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Missing all teeth</td>
<td>1.8*</td>
<td>2.5*</td>
<td>5.0</td>
</tr>
<tr>
<td>Visited dentist in last 12 months</td>
<td>64.7</td>
<td>63.3</td>
<td>63.0</td>
</tr>
</tbody>
</table>

Source: Author’s analysis of data from Centers for Disease Control and Prevention (CDC), Behavioral Risk Factor Surveillance System Survey Data, Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2018

Note: The competitor states are AL, GA, IL, IN, MO, MS, NC, OH, SC, TN, VA, & WV.

These percentages are statistically different from the Kentucky percentages (alpha=.05).
Kentucky has one of the nation’s highest rate of disability (17.9%); the national average is 12.7 percent. The Census Bureau asks six questions to determine the types and prevalence of disabilities. They include the following: Hearing Disability—Is this person deaf or does he/she have serious difficulty hearing?; Visual Disability—Is this person blind or does he/she have serious difficulty seeing even when wearing glasses?; Cognitive Disability—Because of a physical, mental, or emotional condition, does this person have serious difficulty concentrating, remembering, or making decisions?; Ambulatory Disability—Does this person have serious difficulty walking or climbing stairs?; Self-Care Disability—Does this person have difficulty dressing or bathing?; and, Independent Living Disability—Because of a physical, mental, or emotional condition, does this person have difficulty doing errands alone such as visiting a doctor’s office or shopping?

Disabled Individuals, 2019
Kentucky, Competitor States and the U.S.
(total civilian noninstitutionalized population)

Source: 2019 American Community Survey 1-Year Estimates
An estimated 45,000 Kentucky children under 19 years old were not covered by health insurance in 2019, or about 4.3 percent of children. The percentage of uninsured children, which was around 11 percent in 1999, has been generally declining as children were added to the Kentucky Children’s Health Insurance Program (KCHIP) or Medicaid. The Kentucky Children’s Health Insurance Program is free or low-cost health insurance for children. KCHIP is for children younger than 19 who do not have health insurance and whose family income is at or less than 213 percent of the federal poverty level. For example, a family of four can earn up to $57,108 a year and qualify for KCHIP. The percentages of uninsured children (under 19) in the competitor states and U.S. are 5.5 percent and 5.7 percent, respectively in 2019. Investments in children’s health insurance can have high long-term payoffs. A 2019 study by Nathaniel Hendren and Ben Sprung-Keyser, A Unified Welfare Analysis of Government Policies, found that “direct investments in low-income children’s health and education have historically had the highest Marginal Value of Public Funds (MVPF)” when examining 133 policy changes in the United States over a 50 year period. In short, they find the largest “bang for the buck” when investing in children, particularly in programs that improve the health and education of low-income children.

![Children without Health Insurance Coverage, Kentucky, Competitor States and the U.S., 2019](source: 2019 American Community Survey 1-Year Estimates)
An estimated 29.6 million Americans were without health insurance in 2019, with the number and the percentage of uninsured people increasing slightly from the prior year. In Kentucky, 283,000, or 6.4 percent of the total state population, did not have health insurance in 2019. Medicaid has historically played a key role in providing health coverage for disproportionately poor Kentuckians, insuring an estimated 33 percent of the population here in 2019, compared to about 21 percent in the competitor states and 23 in the U.S. The implementation of the Affordable Care Act has increased the number of individuals on Medicaid over the past few years.

Youth Health-Related Behaviors

Research shows important links between health-related behaviors and educational outcomes. Specifically, lower academic achievement among high school students is associated with a lack of physical activity and inadequate nutrition. Based on data from the CDC’s Youth Risk Behavior Survey (YRBS), researchers examined the linkages between several dietary, physical activity, sedentary risk behaviors, and students’ grades in school. The findings show that, when compared to students with lower grades (mostly D’s/F’s), students who reported higher grades (mostly A’s) are: more likely to engage in physical activity; play on at least one sports team; eat breakfast; eat fruits and vegetables as well as drink 100% fruit juice; drink milk; and not drink soda. Furthermore, the better students were less likely to watch television for extended periods, or play video games, or use a computer 3 or more hours per day. The table below shows how Kentucky high school students compare to the U.S. and selected surrounding states. In general, Kentucky students get less physical activity, evidenced by statistically significant differences. In addition, compared to the U.S., Kentucky students generally have poorer dietary practices. Improving the health of today’s high school students can help create a healthier and better prepared workforce in the future.

<table>
<thead>
<tr>
<th>Health-Related Behaviors of High School Students, U.S., Selected States, and Kentucky, 2019</th>
<th>9th through 12th graders</th>
<th>US (%)</th>
<th>SS (%)</th>
<th>KY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ate breakfast on all 7 days before the survey</td>
<td>33.1*</td>
<td>28.5</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>Ate fruit or drank 100% fruit juices one or more times per day during the 7 days prior to the survey</td>
<td>58.2*</td>
<td>52.6*</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>Ate vegetables one or more times per day during the 7 days before the survey</td>
<td>59.3*</td>
<td>52.5*</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td>Drank one or more glasses per day of milk during the 7 days before the survey</td>
<td>28.6*</td>
<td>23.3</td>
<td>24.6</td>
<td></td>
</tr>
<tr>
<td>Did not drink a can, bottle, or glass of soda or pop during the 7 days before the survey</td>
<td>31.7*</td>
<td>28.2*</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>Physically active at least 60 minutes per day on 5 or more days during the 7 days before the survey</td>
<td>44.1*</td>
<td>43.0*</td>
<td>37.4</td>
<td></td>
</tr>
<tr>
<td>Played on at least one sports team during the 12 months before the survey</td>
<td>57.4*</td>
<td>52.3*</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td>Watched television 3 or more hours per day on an average school day</td>
<td>19.8</td>
<td>20.7</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>Played video or computer games or used a computer 3 or more hours per day on the average school day</td>
<td>46.1</td>
<td>43.5*</td>
<td>47.5</td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors’ analysis of data from Centers for Disease Control and Prevention (CDC), Youth Risk Behavior Surveillance System Survey Data, Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2015

Note: The selected states (SS) are AL, GA, IL, MO, NC, MS, SC, TN, VA, & WV. These are weighted averages. VA did not ask the “vegetable” question, VA & NC did not ask the “milk” question, GA did not ask the “soda” question, and VA, NC, & MO did not ask the question on “playing on sport teams.”

*These percentages are statistically different from the Kentucky percentages (alpha=.05).
Some research findings indicate that being significantly overweight or obese can lower a student’s academic achievement. Overweight or obese students, it is argued, are more likely to suffer from adverse health consequences, such as asthma, type 2 diabetes, depression, and sleep apnea, which can then lead to higher absenteeism and negatively affect their academic performance. According to a 2007 study, obesity is a stronger predictor of school absenteeism than race, socioeconomic status, age, or gender. The obesity rate for Kentucky high school students in 2019 was one of the highest in the country. There are only three states with statistically significant higher rates, while there are 24 states with statistically significant lower rates (out of the 41 states to which we can compare Kentucky). There is a statistically significant difference between Kentucky’s youth obesity rate and the U.S. rate in every year shown in the graph below. Finally, Kentucky’s obesity rate has been increasing over time. However, while the 2019 rate of 18.4 percent is statistically higher than its 2003 rate, the 2019 rate is statistically no different from any of the rates from 2005 to 2017.

Source: Author’s analysis of CDC Youth Risk Behavior Survey data, various years.
Youth Smoking & Vaping

The percentage of high school students who smoke cigarettes has dropped dramatically over the last two decades, as evidenced by the Centers for Disease Control and Prevention, *High School Youth Risk Behavior Survey* results shown in the table below. In Kentucky, for example, the percentage went from almost half (47%) in 1997 to about 9 percent in 2019. While cigarettes have become somewhat passé, new products have emerged, such as vaping devices, which include e-cigarettes, e-cigars, e-pipes, vape pipes, vaping pens, e-hookahs, and hookah pens. Approximately one-quarter (26.1%) of Kentucky high school students were using electronic vapor products in 2019, and around one-third of high school students nationally (32.7%). While less harmful than cigarette smoking, the growing use of vaping devices among teens alarms public health officials nonetheless because it is still highly addictive and harmful to one’s respiratory and circulatory systems.

<table>
<thead>
<tr>
<th>Year</th>
<th>Smoke Cigarettes**</th>
<th>Use Electronic Vapor Products***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KY</td>
<td>US</td>
</tr>
<tr>
<td>1997</td>
<td>47.0</td>
<td>36.4*</td>
</tr>
<tr>
<td>2003</td>
<td>32.7</td>
<td>21.9*</td>
</tr>
<tr>
<td>2005</td>
<td>26.2</td>
<td>23.0</td>
</tr>
<tr>
<td>2007</td>
<td>26.0</td>
<td>20.0*</td>
</tr>
<tr>
<td>2009</td>
<td>26.1</td>
<td>19.5*</td>
</tr>
<tr>
<td>2011</td>
<td>24.1</td>
<td>18.1*</td>
</tr>
<tr>
<td>2013</td>
<td>17.9</td>
<td>15.7</td>
</tr>
<tr>
<td>2015</td>
<td>16.9</td>
<td>10.8*</td>
</tr>
<tr>
<td>2017</td>
<td>14.3</td>
<td>8.8*</td>
</tr>
<tr>
<td>2019</td>
<td>8.9</td>
<td>6.0</td>
</tr>
</tbody>
</table>

* Grades 9-12
* Statistically different from Kentucky (alpha=.05).
** Currently smoke cigarettes (on at least 1 day during the 30 days before the survey)
*** Currently used electronic vapor products (including e-cigarettes, e-cigars, e-pipes, vape pipes, vaping pens, e-hookahs, and hookah pens on at least 1 day during the 30 days before the survey)

Source: Centers for Disease Control and Prevention, *High School Youth Risk Behavior Survey*, various years
Youth Alcohol and Drug Use

A range of behavioral risks can compromise the health and well-being of young people. Here, we illustrate trends of two such behaviors. While down sharply in recent years, roughly one-quarter of Kentucky high school students—23.6 percent of males and 23.1 percent of females—are considered current drinkers (at least 1 drink of alcohol on at least one day during the 30 days before the survey). Kentucky’s overall percentage in 2019, which is 23.5 percent, is statistically significantly lower than the U.S. percentage of 29.2 percent (using a 95 percent confidence interval). Forty states participated in the survey in 2019, and only three are significantly lower than Kentucky—California (7.1%), Georgia (6.2%), and Utah (4.3%). The percentage of Kentucky youth who reported using marijuana one or more times in the past month has also been on a downward trend over the last two decades, but is still in the double digits—16.9 percent of males and 14.8 percent of females. Kentucky’s overall percentage in 2019 is 16.1 percent, which is statistically significantly lower than the U.S. percentage of 21.7 percent. Three states are statistically lower than Kentucky, 19 the same, and 19 statistically higher.

<table>
<thead>
<tr>
<th>Year</th>
<th>Alcohol Use**</th>
<th>Marijuana Use***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>1997</td>
<td>53.8</td>
<td>44.5</td>
</tr>
<tr>
<td>2003</td>
<td>46.3</td>
<td>44.2</td>
</tr>
<tr>
<td>2005</td>
<td>38.0</td>
<td>36.8</td>
</tr>
<tr>
<td>2007</td>
<td>41.0</td>
<td>40.1</td>
</tr>
<tr>
<td>2009</td>
<td>40.4</td>
<td>35.2</td>
</tr>
<tr>
<td>2011</td>
<td>35.6</td>
<td>33.3</td>
</tr>
<tr>
<td>2013</td>
<td>32.6</td>
<td>28.0</td>
</tr>
<tr>
<td>2015</td>
<td>25.6</td>
<td>31.2</td>
</tr>
<tr>
<td>2017</td>
<td>24.4</td>
<td>28.6</td>
</tr>
<tr>
<td>2019</td>
<td>23.6</td>
<td>23.1</td>
</tr>
</tbody>
</table>

* Grades 9-12
** Currently drank alcohol (at least 1 drink of alcohol, on at least 1 day during the 30 days before the survey)
*** Currently used marijuana (one or more times during the 30 days before the survey)

Source: Centers for Disease Control and Prevention, High School Youth Risk Behavior Survey, various years
THE REASONS INFRASTRUCTURE development and maintenance are fundamentally important for Kentucky’s future economic advancement are simple; it includes, but is not limited to, aviation, bridges, dams, drinking water, energy, hazardous waste disposal sites, levees, public parks, roads, schools, solid waste processing plants, telecommunications, and wastewater facilities. Infrastructure is all encompassing and provides a foundation for future economic progress.

The state received a “C-” on the 2019 Report Card on Kentucky’s Infrastructure, which was produced by the Kentucky Section of the American Society of Civil Engineers (ASCE); America’s infrastructure got a grade of “D+” on the most recent ASCE infrastructure assessment in 2017. Generally, the engineers evaluate 16 separate categories from aviation to wastewater according to capacity, condition, funding, future need, operation and maintenance, public safety and resilience. The Kentucky assessment in 2019 examined 10 categories.

The Kentucky Report Card presents three broad areas for improving the state’s infrastructure: an integrative and comprehensive big picture approach to planning that anticipates the future challenges while addressing current needs; a concentrated investment in the multimodal freight network to support the distribution and logistics needs of growing industries; and a recognition that rural communities often lack the financial wherewithal to address vital infrastructure needs—particularly with

continued on the next page
While the ASCE infrastructure report card does not include high-speed internet as one of its elements, broadband accessibility and speed are increasingly viewed as fundamentally important components of a state’s infrastructure. The Pew Research Center reported in May 2019 that “Rural Americans are now 12 percentage points less likely than Americans overall to have home broadband; in 2007, there was a 16-point gap between rural Americans (35%) and all U.S. adults (51%) on this question.” Unfortunately, there seems to be wide agreement that Kentucky is lagging in its internet infrastructure, especially in rural areas. In September 2020, a broad coalition of groups, including, but not limited to the Prichard Committee for Academic Excellence, Kentucky Chamber of Commerce, Kentucky Farm Bureau, and Kentucky Primary Care Association, implored state officials to make closing the digital divide a top priority.

Surveys of CEOs and consultants who are involved in industrial site selection decisions show that infrastructure considerations play an important role in their decision-making. For example, choosing from a list of 28 different factors, ranging from labor costs to environmental regulations, the single most important factor for respondents to the 2018 Area Development Site Selection Survey was the availability of skilled labor, evidenced by 90.5 percent ranking it as either “important” or “very important.” By comparison, “highway accessibility” ranked third on the list at 87.2 percent.

Maintaining—let alone expanding—Kentucky’s existing infrastructure, whether school buildings or roads, requires a tremendous amount of money. In today’s budgetary environment, finding the necessary funds is challenging. Generating the resources to maintain and expand the state’s basic infrastructure will not only continue to be a challenge, it will also be an important factor in keeping the state economically competitive for all forms of industry.

We combine several expenditure categories into a single catchall to estimate infrastructure expenditures (see page 242); this includes highways, air transportation, sea and inland ports, parking facilities, sewerage, solid waste management, and utilities like water supply, electric power, gas supply and transit. State and local expenditures for infrastructure have steadily increased on a per capita basis (in constant 2019 dollars). When viewed over the 24-year period from 1995 to 2018, Kentucky has a higher percentage increase (24%) than the competitor states (14%) or the U.S. (22%). Kentucky has expended slightly more of its cumulative gross domestic product on infrastructure (3.0%) than the competitor states (2.7%) or the U.S. (2.9%). Despite the state’s past investments, it is clear more are needed to ensure the state has an adequate infrastructure to ensure future economic prosperity.
An estimated 76.4 percent of Americans 16 years and older drive to work alone, which is near an all-time high. By comparison, carpooling is around 9.1 percent and public transportation accounts for about 5.0 percent. The rest use some other form of transportation, like biking, or work from home. Reflecting both economic centers of gravity as well as the state of the infrastructure network, the map below illustrates Kentucky’s county-level average travel times to work. An estimated 82.1 percent of Kentuckians drive to work alone. Kentucky’s statewide average of 23.3 minutes is less than the U.S. average of 26.6 minutes (based on 5-year pooled 2014-2018 data). The counties in the map are divided into one of three categories: below the Kentucky average; above the Kentucky average but below the U.S. average; and above the U.S. average. Calloway County in Western Kentucky has the lowest average travel time at 16.9 minutes, while Elliott County, located in Eastern Kentucky, is the highest at 39.4 minutes. The Wall Street Journal reported in November 2017 that traffic congestion incurred a $1,400 cost on each driver in the U.S. in 2016 due to wasted fuel, lost time, and decreased productivity (Inrix Annual Scorecard). New York City has an average travel time to work of 36.7 minutes, which is less than Elliott County.

Source: American Community Survey, 2018 5-Year Estimate, Table DP03
Ideas, innovation, and intellectual capital form the foundation of the evolving knowledge economy. But Kentucky, like most states, is still centered on making and growing things, extracting and transporting raw materials, and moving people and products to markets and workplaces. Thus, the traditional transportation infrastructure—the road system—is still an essential piece of the economic development puzzle. Around 25 percent of Kentucky’s economy is in goods-producing industries that are highly dependent on transportation. And even as the nation’s economy evolves over the next few decades, the movement of freight along the country’s highways, a quintessential “old economy” activity, will continue to grow. An extensive and efficient transportation system, both now and in the future, can facilitate lower industry production costs and consumer prices, widen access to commodities for businesses and consumers, and broaden the pool of workers for business while creating more job opportunities. The bottom line: roads and road quality still matter. In the figure below, road condition depends on pavement roughness, with rougher roads indicating poorer condition; only a small percentage (3.9%) of Kentucky’s roads are in poor condition.

Source: Author’s calculations based on Table HM-64, Highway Statistics 2019, Federal Highway Administration. CS is the weighted average of the competitor states.
NARROW ROADS

This is a measure of lane width for “other principal arterial” roads, minor arterial, and major collector roads. It does not include interstates, other freeways, or expressways. A narrow lane is one that is less than 12 feet wide. Obviously, the more narrow the lane, the more difficult it is to move products and materials with large trucks. Consequently, the state and condition of the transportation infrastructure can affect economic development decisions. Here we focus on rural roads, not urban. An estimated 77.4 percent of Kentucky’s other principal arterial, minor arterial, and major collector rural roads are narrow, compared to 46.5 percent nationally and 66.6 percent for the competitor states.

Source: Author’s calculations based on Table HM-53, Highway Statistics 2019, Federal Highway Administration. CS is the weighted average of the competitor states.
The Federal Highway Administration (FHWA) categorizes the country’s bridges using a “Good-Fair-Poor” condition framework, outlined in the Pavement and Bridge Condition Performance Measures final rule, which was published in January of 2017. Of the 14,394 bridges in Kentucky, 7.2 percent of them are considered to be in poor condition, which is about the same as the competitor states (7.1%) and the U.S. (7.5%). The real difference between Kentucky, the competitor states, and U.S. lies in the distribution of bridges in the other two categories—good and fair. The percentage of Kentucky bridges deemed to be in good condition (34.1%) is much lower than the competitor states (45.6%) or the U.S. (45.3%); and, is much higher in the “fair” category (58.7%) compared to the competitor states or the U.S., where are 47.3% and 47.2 percent respectively. While 92.8 percent of Kentucky bridges were considered to be in good or fair condition in 2019, Kentucky had only the 30th highest percentage among all the states and DC. Nevada is the highest with 98.7 percent and Rhode Island the lowest with 77.7 percent.

Bridges in Good or Fair Condition, Kentucky, Competitor States, and the U.S., 2012-2019

(percentage of all bridges)

Source: U.S. Department of Transportation, Federal Highway Administration, Office of Bridges and Structures
This map shows that the highest concentration of bridges in poor condition are located in the southeastern part of the state. Counties are divided into four groups: 0 to 5 percent of the bridges are in poor condition (45 counties across the state); 5 to 7.5 percent (27); 7.5 to 15 percent (40); and 15 to 32 percent (8). Leslie County has the highest percentage in the state, with 31.5 percent of its bridges deemed to be in poor condition.
WATER QUALITY

The United States enjoys one of the safest and most reliable supplies of drinking water in the world. The Safe Drinking Water Act of 1974 sought to preserve the nation’s water supply while maintaining high standards for quality. Most Americans get their water from a community water system (CWS), 49,000 of which served approximately 309 million people nationally in 2019, according to the Environmental Protection Agency. Around 7.2 percent of the U.S. population received its water from a community water system that reported at least one health-based violation in 2019, while it was about 4.3 percent in Kentucky. Of Kentucky’s 382 community water systems, an estimated 94.2 percent met all applicable health-based standards and were free of violations in 2019. For the last five years in Kentucky, the percentage of community water systems meeting all applicable health-based standards has been lower than the competitor states and the U.S., as illustrated in the chart. The low point for Kentucky going back the last several years was in 2015, when only about 75 percent of community water systems were violation-free on health-based standards.
Safe and sanitary drinking water is vital to a community’s health and wellbeing. Community (public) water supplies and systems that have difficulty providing water that meets the health-based standards are more likely to be systems that are not adequately maintained or operated. This map shows the 20 Kentucky counties with community water systems (CWS) that experienced one or more health-based violations of the Safe Drinking Water Act in 2019. There were nearly 48 violations committed by 22 community water systems (out of 382 total CWS in Kentucky). These violations affected over 190,000 individuals who were served by the 22 systems—with some counties experienced multiple violations.
HIGH-SPEED INTERNET

Access to and use of the internet is essential for anyone becoming politically informed, socially integrated, and economically successful in the Information Age. Studies suggest that enhancing the nation’s broadband infrastructure can improve innovation, entrepreneurship, and productivity. According to the Federal Communications Commission (FCC), the digital divide between urban and rural areas continues to narrow, as shown in the table. As noted in the 2020 Broadband Deployment Report, “more Americans than ever before have access to high-speed broadband.” They state that “the number of Americans lacking access to fixed terrestrial broadband service at 25/3 Mbps continues to decline, going down by more than 14% in 2018 and more than 30% between 2016 and 2018. The number of Americans without access to 4G Long Term Evolution (LTE) mobile broadband with a median speed of 10/3 Mbps fell approximately 54% between 2017 and 2018. The vast majority of Americans—surpassing 85%—now have access to fixed terrestrial broadband service at 250/25 Mbps, a 47% increase since 2017. Over the same period, the number of Americans living in rural areas with access to such service increased by 85%.” Nonetheless, the pandemic has revealed many gaps in rural areas, leaving workers, students, and citizens without adequate connections to the information resources they need.

<table>
<thead>
<tr>
<th>Area</th>
<th>Access Overall</th>
<th>Urban Deployment</th>
<th>Rural Deployment</th>
<th>Broadband Adoption*</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>94</td>
<td>99</td>
<td>77</td>
<td>86.4</td>
</tr>
<tr>
<td>AL</td>
<td>87</td>
<td>98</td>
<td>72</td>
<td>81.6</td>
</tr>
<tr>
<td>GA</td>
<td>94</td>
<td>98</td>
<td>80</td>
<td>85.0</td>
</tr>
<tr>
<td>IL</td>
<td>95</td>
<td>99</td>
<td>68</td>
<td>86.0</td>
</tr>
<tr>
<td>IN</td>
<td>94</td>
<td>99</td>
<td>80</td>
<td>83.9</td>
</tr>
<tr>
<td>KY</td>
<td>93</td>
<td>99</td>
<td>84</td>
<td>83.1</td>
</tr>
<tr>
<td>MS</td>
<td>79</td>
<td>97</td>
<td>61</td>
<td>76.8</td>
</tr>
<tr>
<td>MO</td>
<td>90</td>
<td>99</td>
<td>70</td>
<td>84.8</td>
</tr>
<tr>
<td>NC</td>
<td>95</td>
<td>100</td>
<td>86</td>
<td>85.3</td>
</tr>
<tr>
<td>OH</td>
<td>95</td>
<td>99</td>
<td>81</td>
<td>85.4</td>
</tr>
<tr>
<td>SC</td>
<td>90</td>
<td>97</td>
<td>75</td>
<td>82.7</td>
</tr>
<tr>
<td>TN</td>
<td>92</td>
<td>99</td>
<td>79</td>
<td>83.0</td>
</tr>
<tr>
<td>VA</td>
<td>92</td>
<td>98</td>
<td>75</td>
<td>86.7</td>
</tr>
<tr>
<td>WV</td>
<td>81</td>
<td>95</td>
<td>69</td>
<td>81.0</td>
</tr>
</tbody>
</table>

*Broadband adoption is of any type for a household, e.g., cellular, satellite, cable, DSL, or fiber optic (U.S. Census, ACS, 2019 1-year estimates).
Since the beginning of the “digital age,” technology experts, community development specialists, and concerned citizens have expressed concerns about the so-called digital divide. Despite considerable progress, the urban-rural digital divide has been difficult to bridge. As is evident in the map below, Kentucky’s urban areas tend to have much higher broadband adoption rates. A June 2017 Wall Street Journal article, “Rural America is Stranded in the Dial-up Age,” describes the importance of high-speed internet for the economic prospects of rural communities: “Counties without modern internet connections can’t attract new firms, and their isolation discourages the enterprises they have: ranchers who want to buy and sell cattle in online auctions or farmers who could use the internet to monitor crops. Reliance on broadband includes any business that uses high-speed data transmission, spanning banks to insurance firms to factories. Rural counties with more households connected to broadband had higher incomes and lower unemployment than those with fewer, according to a 2015 study...” There are a number of Kentucky counties that will continue to face significant economic challenges without access to high-speed internet. The lowest values are located in the rural areas of the state, while the metro areas are generally higher.

Broadband High-Speed Internet Connections, 2015-2019
(percentage of households)

Source: American Community Survey, 2019 5-Year Estimate, Table S2801
DAMS

The Oroville Dam in Northern California captured the national headlines in February 2017 when the threat of its failure forced the evacuation of almost 200,000 people. Of Kentucky’s 1,089 dams, 271 were classified as “high hazard potential” in 2018. Dams are assigned to one of five categories (high, significant, or low hazard potential—and undetermined or not available are options) by Dam Safety Program engineers based on the likely loss of human life, level of property damage, environmental destruction, and economic loss that would likely ensue if the structure failed. A high hazard dam is one that, if it failed, may cause loss of life or serious damage to houses, industrial or commercial buildings, important public utilities, main highways or major roads. Of Kentucky’s 271 high hazard potential dams, 64.6 percent are deemed to be in “satisfactory” or “fair” condition based on a classification scheme that has the following categories: satisfactory, fair, poor, or unsatisfactory (not rated is also an option). At 64.4 percent, Kentucky has the 31st highest percentage of dams in satisfactory or fair condition among the states. Even though Kentucky is higher than the competitor state (52.9%) and U.S. averages (63%), there are 81 high hazard dams in poor condition and 15 that are not rated.

Source: Author’s calculations based on from the National Inventory of Dams and data from the Association of State Dam Officials.

GATTON COLLEGE OF BUSINESS & ECONOMICS
This map shows the Kentucky counties that have at least one of the state’s 271 high hazard potential dams. As we explain on the facing page, if one of these dams fails, it may cause loss of life or serious damage to houses, industrial or commercial buildings, important public utilities, main highways or major roads. We do not have data on the conditions of specific dams, but we do know that 81 of them are in “poor” condition—nearly 30 percent of all high-hazard dams in Kentucky. Dam owners are encouraged to develop Emergency Action Plans (EAP) for their dams. These plans are a written document that “identifies incidents that can lead to potential emergency conditions at a dam, identifies the areas that can be affected by the loss of reservoir and specifies pre-planned actions to be followed to minimize property damage, potential loss of infrastructure and water resource, and potential loss of life because of failure or mis-operation of a dam.” Essentially, an EAP is a plan of action to be taken to reduce the potential for property damage and loss of life in an area affected by a dam failure or large flood. There are 13 high hazard potential dams in Kentucky, all privately owned, that do not have an Emergency Action Plan; the rest either have them or an EAP is not required.

High Hazard Potential Dams by Kentucky Counties, 2018

Source: Author’s analysis of the 2018 National Inventory of Dams (NID) database.
SOLID WASTE DISPOSAL

In 1992, the Kentucky General Assembly set the ambitious goal of reducing the amount of municipal solid waste (MSW) deposited in Kentucky landfills in each subsequent year—but the amount of waste remains steady. While the total amount of solid waste deposited in Kentucky landfills trended downward from its peak of 5.35 million tons in 2007 to just over 5 million tons in 2013, the amount deposited in 2014 and 2015 increased to around 6 million tons. A growing portion of the total, as evidenced in 2014 and 2015, is solid waste from *out-of-state sources*; it reached a record high of almost 2 million tons in 2014 and remained high in 2015 with 1.75 million tons, a significant increase since the early to mid-1990s. As a result of this growing trend, out-of-state solid waste constituted 33 percent of the total amount of waste deposited in Kentucky’s landfills in 2014—compared to less than 5 percent in the early to mid-1990s. However, there was a sudden decrease in 2016, evidence by a decline to just under a million tons (0.88), and this decreased to just over a half-million tons (0.62) in 2017. In 2019, about 14.7 percent of the state’s nearly 4.8 million tons of solid waste was from out of state. Landfills, “landfarms,” and other specially designated areas for solid waste disposal are expensive to open, maintain, operate, monitor, or close. Policies, actions, and incentives to reduce waste disposal are economically beneficial.
EARLY 20 YEARS AGO, KENTUCKY created the Office for the New Economy within the Cabinet for Economic Development, and then launched Kentucky Innovation: A Strategic Plan for the New Economy. The goal was to capture some of the burgeoning high-tech economic dynamism found along Route 128 in Boston, Silicon Valley in the Bay Area, or, at a minimum, to become the next Research Triangle Park in North Carolina. Kentucky was not alone, as many states jumped on board the innovation train.

Two decades into these efforts to plant and grow the innovation seeds across the heartland, researchers have found that not a lot has changed. Boston, Seattle, San Diego, San Francisco and Silicon Valley garnered 90 percent of the “high-tech jobs” created from 2005 to 2017. Meanwhile, Kentucky is ranked 44th in the 2020 State Technology and Science Index, which combines several indicators that reflect a state’s research and development inputs, risk capital and entrepreneurial infrastructure, human capital investments, technology and science workforce, and technology concentration and dynamism; Kentucky was ranked 46th in 2018.

Our state needs good ideas, adequate finances, and energetic human capital to create and support high-growth enterprises—but it also might need some help to make this happen. Researchers at the Brookings Institution, for example, have called for “a massive federal effort to transform a short list of ‘heartland’ metro areas into self-sustaining ‘growth centers’

continued on the next page
continued from the previous page

that will benefit entire regions.” (Atkinson, et al., *The case for growth centers: How to spread tech innovation across America*, Brookings, December 9, 2019)

The Kauffman Foundation’s *Index of Early-Stage Entrepreneurship*, another index similar to the *State Technology and Science Index*, is based on four factors: 1) the rate of new entrepreneurs; 2) the opportunity share of new entrepreneurs; 3) the startup early job creation; and 4) the startup early survival rate. The *Kauffman Early-Stage Entrepreneurship (KESE) Index* is an equally weighted average or composite of the four indicators. Kentucky’s national KESE Index ranking in 2019 is 41st, placing it on the low end among the competitor states; only two competitor states are lower (i.e., Ohio & West Virginia), while the other 10 rank higher. Nationally, California has the highest KESE Index rank (5.0), and Connecticut the lowest (-7.6).

Our examination of high-technology establishments over the period of 2003 to 2018 shows that Kentucky has consistently trailed the competitor states and the U.S. In 2018, 9.4 percent of establishments in competitor states and 9.9 percent in the U.S. are considered “high-tech.” In the same year only 7.7 percent of Kentucky establishments are considered “high-tech.”

Why should anyone care about startups, innovations, and the funding for research and development that powers them? The answer is simple: over the long term, our collective standard of living will likely depend on it. John Fernald at the Federal Reserve Bank of San Francisco and Charles Jones at Stanford University have found that around three-fourths of U.S. economic growth since 1950 was fueled by just two factors—rising educational attainment and research intensity—with the latter accounting for nearly 60 percent of the growth. Despite the tight connections between research intensity, economic growth and job creation, total research and development expenditures as a percentage of gross domestic product are significantly lower in Kentucky (0.95%) compared to the competitor states (1.9%) and the U.S. (2.8%).

As federal research and development funds become more limited, the nation’s universities can and should do more to realize their tremendous innovation and commercialization potential. Moreover, as government budgets tighten, policy makers, as well as taxpayers, increasingly expect a positive return on investment from scarce public resources. Kentucky needs good ideas, adequate finances, and energetic human capital to create and nurture high-growth enterprises.
EARLY-STAGE ENTREPRENEURSHIP

The Kauffman Foundation Index of Early-Stage Entrepreneurship is based on four factors: 1) the \textit{rate of new entrepreneurs}, which reflects the percent of adults becoming entrepreneurs in a given month, as a year average; 2) the \textit{opportunity share of new entrepreneurs}, which shows the percent of entrepreneurs driven by opportunity (instead of necessity); 3) the \textit{startup early job creation}, which reflects the jobs created by startups per 1,000 people; and 4) the \textit{startup early survival rate}, which is the percentage of firms surviving one year after founding. The last column in the table below is the \textit{Kauffman Early-Stage Entrepreneurship (KESE) Index}, an equally weighted average or composite of the four indicators. Kentucky’s national KESE Index ranking in 2019 is 41st, placing it on the low end among the competitor states; only two competitor states are lower (i.e., Ohio & West Virginia), while the other 10 rank higher. Nationally, California has the highest KESE Index rank (5.0), and Connecticut the lowest (-7.6).

<table>
<thead>
<tr>
<th>Area</th>
<th>New Entrepreneurs</th>
<th>Opportunity Entrepreneurs</th>
<th>Startup Early Job Creation</th>
<th>Startup Early Survival</th>
<th>KESE Index (AVG 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>0.31%</td>
<td>86.9%</td>
<td>5.2</td>
<td>79.6%</td>
<td>1.2</td>
</tr>
<tr>
<td>AL</td>
<td>0.23%</td>
<td>88.7%</td>
<td>4.7</td>
<td>81.5%</td>
<td>0.5</td>
</tr>
<tr>
<td>GA</td>
<td>0.41%</td>
<td>88.4%</td>
<td>5.8</td>
<td>75.6%</td>
<td>2.6</td>
</tr>
<tr>
<td>IL</td>
<td>0.27%</td>
<td>83.8%</td>
<td>4.7</td>
<td>78.9%</td>
<td>-0.5</td>
</tr>
<tr>
<td>IN</td>
<td>0.25%</td>
<td>90.3%</td>
<td>3.6</td>
<td>79.9%</td>
<td>0.0</td>
</tr>
<tr>
<td>KY</td>
<td>0.26%</td>
<td>84.8%</td>
<td>4.1</td>
<td>79.8%</td>
<td>-0.6</td>
</tr>
<tr>
<td>MO</td>
<td>0.37%</td>
<td>80.8%</td>
<td>5.4</td>
<td>75.3%</td>
<td>0.3</td>
</tr>
<tr>
<td>MS</td>
<td>0.33%</td>
<td>86.4%</td>
<td>3.8</td>
<td>80.5%</td>
<td>1.3</td>
</tr>
<tr>
<td>NC</td>
<td>0.25%</td>
<td>87.5%</td>
<td>4.7</td>
<td>79.7%</td>
<td>-0.1</td>
</tr>
<tr>
<td>OH</td>
<td>0.20%</td>
<td>75.9%</td>
<td>3.7</td>
<td>79.7%</td>
<td>-3.4</td>
</tr>
<tr>
<td>SC</td>
<td>0.26%</td>
<td>84.9%</td>
<td>6.4</td>
<td>78.5%</td>
<td>0.0</td>
</tr>
<tr>
<td>TN</td>
<td>0.29%</td>
<td>91.5%</td>
<td>4.8</td>
<td>79.4%</td>
<td>1.3</td>
</tr>
<tr>
<td>VA</td>
<td>0.20%</td>
<td>83.5%</td>
<td>5.2</td>
<td>90.5%</td>
<td>2.5</td>
</tr>
<tr>
<td>WV</td>
<td>0.18%</td>
<td>85.3%</td>
<td>3.2</td>
<td>79.9%</td>
<td>-2.6</td>
</tr>
</tbody>
</table>

Combining several indicators that reflect a state’s research and development inputs, risk capital and entrepreneurial infrastructure, human capital investments, technology and science workforce, and technology concentration and dynamism, the Milken Institute has ranked the states according to their science and technology prowess in a 2020 report, *State Technology and Science Index*. Kentucky is ranked 44th, in the bottom tier of states. The top state is Massachusetts, followed by Colorado, California, Maryland, Washington, and Utah. These six states represent the top tier in the Index.

State Technology and Science Index 2020

Source: Milken Institute 2020 State Technology and Science Index
Kentucky’s county-level results from the *Innovation 2.0 Index* are illustrated on the map below, with the highest innovation index values anchoring the three angles of the urban triangle (i.e., the Louisville area, Northern Kentucky, and the Fayette County area) and extending west to Hardin and Warren Counties. The index is based on five broad categories and includes 57 different variables. The five broad categories include Human Capital and Knowledge Creation, Business Dynamics, Business Profile, Employment and Productivity, and Economic Well-Being. Some of the variables include educational attainment, high-technology employment, broadband adoption, venture capital investments, patent creation, worker productivity, proprietor income, the poverty rate, and per capita income. The highest ranked Kentucky county is Boone at 111. San Mateo County, California— which is Silicon Valley— has the highest value of any county in the United States at 133.4; Issaquena County, Mississippi, has the lowest index value in the country at 54.8. The map below shows Kentucky’s counties distributed within categories representing the national quintiles, or five equal categories. That is, by taking all counties in the U.S. and ranking them lowest to highest, eleven Kentucky counties are in the top quintile or upper 20 percent of counties nationally. There are 55 Kentucky counties in the bottom quintile.

Innovation Index by Kentucky County

Innovation, as measured by the number of patents issued, is widely regarded as a measure of a state’s entrepreneurial energy. Research finds that innovation, along with education, has a significant impact on a state’s per capita income. A study by the Federal Reserve Bank of Cleveland shows that states which generate innovation, as measured by patents, can reap economic rewards that endure for generations. The authors conclude, “A state’s knowledge stocks (as measured by patents and education levels) are the main factors explaining a state’s relative per capita income.” In other words, Kentucky’s much lower-than-average patent stock—which has trailed the U.S. as well as the competitor states for the last 50 years—along with lagging educational attainment rates, are why the state’s per capita income has languished at just over 80 percent of the U.S. average for the last several decades. Overall, the number of patents has increased significantly since 2009, but there is a markedly lower prevalence of patents in Kentucky (175.2 per million population) compared to the U.S. (541.2 per million population) and competitor states (325.7 per million population).

Number of Patents, Kentucky, Competitor States, and the U.S., 1990-2019

(per 1 million population)

Source: Calculated by the author using US Patent and Trademark Office and U.S. Census Bureau data.

Note: Data include utility, design, plant, and reissue patents.
From 2000 to 2015, Kentucky businesses and individuals acquired 7,639 utility patents, which are patents for invention. Of this total, 4,066 or 53 percent were from two counties: Fayette and Jefferson. The next 12 counties account for 2,310 or 30 percent. The county-level map illustrates the concentrated nature of patent generation in Kentucky.

Utility Patents by County, 2000-2015

SMALL BUSINESS INNOVATION RESEARCH

Small Business Innovation Research (SBIR) and Technology Transfer (STTR) funding is available to companies with 500 or fewer employees; it is designed to stimulate high-technology innovation and facilitate the commercialization of scientific and technological discoveries. According to the National Science Foundation, “a high value indicates that small business firms in a state are doing cutting-edge development work that attracts federal support.” When compared to competitor states and the U.S. average, Kentucky has consistently lagged behind—but this appears to be changing. Since the mid-2000s, SBIR/STTR funding as a percentage of gross domestic product has been generally declining in the U.S. and more or less flat for the competitor states; meanwhile, it has been steadily increasing in Kentucky. However, as the figure shows, Kentucky’s $94 per $1 million in state gross domestic product during the 2017-19 period is below the U.S. ($123) and competitor states ($106).

![Small Business Innovation Research (SBIR) & Technology Transfer (STTR) Funding, 1983-2019, Kentucky, Competitor States, and the U.S.](image)

Source: Author's analysis of SBIR/STTR data
SBIR/STTR Awards by County

Of all the dollars invested through the SBIR and STTR programs from 1983 to 2019, the majority went to ventures in two counties: Fayette and Jefferson. There were approximately 680 awards in Kentucky during this time and 342 were in Fayette County, representing 45 percent of the total funding. Jefferson County was the second highest recipient with 195 awards and around 37 percent of the total funding. Kenton, Woodford, and Warren Counties received 88 awards and 12 percent of the total funds. These five counties account for virtually all of Kentucky’s SBIR/STTR awards (92%) and funding (93%) during this period, which is indicative of the geographic concentration of Kentucky’s innovation ecosystem.

Kentucky SBIR/STTR Awards by County, 1983-2019

Source: Authors’ analysis of data from www.sbir.gov
Science, technology, engineering, and mathematics (STEM) occupations accounted for 6.3 percent of the jobs in the U.S. in 2018, compared to 4 percent in Kentucky. The presence of STEM occupations can be viewed as the successful outcome of an entrepreneurial ecosystem that supports innovation. Over half of the STEM jobs nationally are in two broad areas: computers and engineering. According to the Bureau of Labor Statistics, computer occupations make up about 45 percent of STEM employment, while engineers make up around 20 percent. Wages are generally higher for STEM occupations. The national average wage for all STEM occupations in 2018 was $93,130, nearly double the national average wage for non-STEM occupations ($51,440). The growth of these jobs is obviously desirable, but this growth is spread unevenly across the states. Between May 2007 and May 2018, states that added the largest numbers of STEM jobs included California (259,100), Texas (138,100), North Carolina (70,200), and New York (67,400). On a percentage change basis, North Dakota experienced the largest increase in STEM jobs at 56 percent, followed by Utah (38%), North Carolina (35%), and Georgia (34%). By comparison, Kentucky added about 8,200 STEM jobs from 2007, the peak of the last economic expansion, to 2018. This represents an 12 percent increase—placing the state in the second lowest quintile.
STEM JOBS

There has been widespread agreement among policy makers nationally for the last few decades regarding the desirability of increasing the numbers of science, technology, engineering, and mathematics (STEM) occupations. These are high-wage jobs in economic sectors that are highly coveted by economic development professionals, community leaders, and individual workers. In 2019, an estimated 4.2 percent of occupations in Kentucky are in the STEM area, which translates to about 1,774 jobs per 100,000 population. This number is significantly lower than both the competitor states (2,638) and U.S. (2,847) averages. DC (10,069) and Massachusetts (4,761) are ranked first and second, while Mississippi (1,277) is ranked last. Among the 50 states and DC, Kentucky is ranked 46th.

STEM Jobs in 2019
Kentucky, Competitor States, and the U.S.
(per 100,000 population)

Note: CS is the competitor state weighted average
HIGH-TECHNOLOGY ESTABLISHMENTS

According to the National Science Foundation (NSF), high-technology industries have at least twice the number of scientific, engineering, and technical occupations compared to the average for all industries. These workers have extensive education and training in the sciences, mathematics, and engineering. We use 50 different industries (at the 4-digit NAICS level) to identify high-technology establishments. Using the 46 sectors identified by NSF and four additional identified by the Milken Institute, we calculate the number of high-technology establishments as a percentage of total establishments. Dating back to 2003 Kentucky has consistently trailed the competitor states and the U.S. In 2018, 9.4 percent of establishments in competitor states and 9.9 percent in the U.S. are considered “high-tech.” In the same year only 7.7 percent of Kentucky establishments are considered “high-tech,” ranking it 43th nationally. The top ranked state is Delaware with 14 percent (DC is higher at 18.3%), and South Dakota is ranked last with 6.5 percent.

High-Technology Establishments, Kentucky, Competitor States, and the U.S., 2003-2018
(as a percent of total establishments)

Source: Author’s analysis of County Business Patterns, U.S. Census Bureau, various years
According to the Kauffman Foundation, most young companies are started from the savings of their founders and then sustained by positive cash flow. The next largest source of capital for young companies is credit cards, followed by borrowed money from family and friends, banks, and then venture capital. Research also shows that less than 20 percent of the fastest growing companies in the United States took any venture money. Moreover, venture capital investments are typically concentrated in a just few states, such as California, New York, and Massachusetts. In 2018, for instance, these three states accounted for 77 percent of all venture capital funding. Nevertheless, the level of venture capital in a state’s economy is frequently used as an indicator of innovation capacity and entrepreneurial energy. In 2018, venture capital investments in Kentucky were $326 per $1 million of state gross domestic product (in constant 2019 dollars)—which was substantially lower than the competitor states ($1,753) and the U.S. average ($5,900).

Self-Employed

The self-employed include a diverse and broad range of occupations, from farmers to landscapers to doctors. One characteristic that can be attributed to each of them, is the willingness to chart their own economic path. Either out of necessity or opportunity, these individuals demonstrate the spirit needed to create an entrepreneurial economy. Around 7.5 percent of part- and full-time working prime working age adults (25 to 54 years old) in Kentucky are self-employed, which is about the same as the competitor states’ average. The percentage of self-employed Americans is somewhat higher at 8.8 percent. Over the last thirty years, these percentages have been trending down, evidenced by the decline in Kentucky from 10.8 percent to 7.5 percent. Nonetheless, around 100,000 prime working age individuals are self-employed in Kentucky—compared to over 1.3 million prime working age Kentuckians who work for a wage or salary earned at a business, a nonprofit, or in government.

![Self-Employed, Kentucky, Competitor States, and the U.S., 1988-2020](https://example.com/self-employed-graph.png)

Gatton College of Business & Economics
Entrepreneurial Depth

Entrepreneurship is a particularly promising vehicle for economic development, as reflected in the January 2012 update of the Kentucky Cabinet for Economic Development Strategic Economic Development Plan. Entrepreneurs help create new jobs, and generate wealth and new growth. They are innovative users of assets and resources and appear to be a critical mechanism for bringing new ideas and innovations to the marketplace. The depth of entrepreneurship can be gauged by examining the value created by entrepreneurs in a region as measured by the ratio of self-employment income to the number of self-employed workers in an economy. Unlike breadth, which measures the number of entrepreneurs in a region, depth examines the value. High-value entrepreneurs clearly earn more, add more value, and enhance regional growth and prosperity more than other entrepreneurs. Kentucky has generally trailed the United States and competitor states in entrepreneurial depth. In 2019, Kentucky lagged the U.S. and competitor states by approximately $9,500 and $5,000 respectively.

Average Self-Employment Income,
Kentucky, Competitor States, and the U.S., 1969-2019
(nonfarm proprietor income/nonfarm proprietor employment)

Source: U.S. Department of Commerce, Bureau of Economic Analysis
NONEMPLOYER ESTABLISHMENTS

This is another measure of self-employment. According to the Census Bureau, “A nonemployer business is one that has no paid employees, has annual business receipts of $1,000 or more ($1 or more in the Construction industry), and is subject to federal income taxes.” Some examples of these businesses are beauty salons, child-care providers, landscaping services, barber shops, real estate agents, tax preparers, and electricians—just to name a few. These types of small enterprises grew steadily from the late 1990s until the Great Recession in 2008, when the growth rate stalled. Since then, the U.S. and the competitor states have rebounded and are now slightly above their pre-recession rates. Historically, Kentucky’s rate has been lower than the competitor states and the U.S., and since the Great Recession Kentucky’s rate has been essentially flat.

Source: Author’s analysis of data from the U.S. Census Bureau
Population

Population growth is indicative of a state’s economic energy. Between the peak of the previous economic expansion, which was during the fourth quarter of 2007, and the “present” (2019), Kentucky experienced slower population growth (5%) than the U.S. (9%) or the competitor state averages (7%). Because Kentucky is generally more rural, has fewer minority citizens, and is somewhat older, the population has grown slower here compared to the U.S.

During this time period, there were marked regional differences within the state. Kentucky’s Urban Triangle experienced a 8.3 percent increase, and South Central Kentucky is not far behind at 6 percent. However, the population in Western Kentucky grew less than 1 percent and in Eastern Kentucky it declined by 3.7 percent. And there are several counties with population levels lower in 2019 compared to 2007. In fact, 62 counties, largely in Eastern Kentucky, but several in the Western Kentucky, lost population during this time. The five largest declines were in Lee (-12.4%), Martin (-11.9%), Leslie (-11.2%), Harlan (-10.9), and Fulton Counties (-10.7%). On the other hand, population growth in much of Northern and Central Kentucky has been strong. The five fastest growing counties all experienced double-digit increases, and include Scott (25.7%), Warren (19.8%), Shelby (17.3%), Boone (16.5%), and Jessamine Counties (15.2%).

In today’s global economy, diversity is increasingly important and recognized as a community asset. In 2019, racial minorities comprised about 28 percent continued on the next page
of U.S. and competitor state populations, and only 13 percent of the Kentucky population. While immigration can help diversify and grow a state’s population, Kentucky’s foreign-born population is relatively small (4.4%). By comparison, the competitor state and U.S. averages are 7.8 and 13.7 percent, respectively. As their numbers increase, immigrants can strengthen our communities and bolster our economy. University of Kentucky economist Dr. Jenny Minier notes that “more than 40% of Fortune 500 companies, including American icons like Apple, Budweiser, Google, and McDonald’s, were founded by immigrants or the children of immigrants.” Their economic contribution extends across the entire range of jobs in the labor force, from those who harvest agricultural products to those occupying Fortune 500 CEO suites.

One telling statistic of their impact is this: the percentage of U.S. or native-born Kentuckians (25 or older) with a bachelor’s degree or higher is 23 percent, while the percentage of foreign-born Kentuckians with a bachelor’s or higher is 34 percent—around one out of three compared to about one out of four. Given the importance of education to economic prosperity—at the individual as well as community levels—individuals immigrating into Kentucky increase the potential for growth within the economy.
Kentucky’s population in the 2010 Census was 4,339,367, representing a 7.4 percent increase from the 2000 Census population of 4,041,769 and ranking it the 26th most populous state. Kentucky’s population was essentially flat from 1940 to 1970, growing by just over 13 percent while the U.S. population increased by over 55 percent. However, from 1970 to 2010, Kentucky’s population increased by 35 percent, which is lower than the competitor states (41 percent) and the United States (52 percent), but represents a significant increase from the preceding decades. The most recent population estimate (2019) for Kentucky is 4,467,673.

Source: U.S. Census Bureau
While Kentucky has become increasingly urban over the years, a significant portion of Kentucky’s population live in rural areas—especially compared to its competitor states and the U.S. In the 2010 Census, nearly 42 percent of Kentucky’s population resided in rural areas (the balance of 58 percent live in urban areas), compared to about 28 percent in the competitor states and around 19 percent in the U.S. Rural communities can have many unique and appealing assets that provide a foundation for economic development activities. For example, natural amenities such as mountains, lakes, streams, forests, and wildlife can be used to leverage economic development and attract individuals hoping to find more idyllic surroundings. At the same time, there are many development challenges associated with building diverse economies and providing an adequate infrastructure in rural areas.

Source: U.S. Census Bureau
Population Change

A state’s population growth rate is indicative of its economic energy. Here we present state growth rates between the peak of the last economic expansion, which was during the fourth quarter of 2007, and the “present” (2019). By 2019, the U.S. population was 9.0 percent higher than the peak of the last economic expansion (or in 2007). As evidenced in the chart below, Kentucky experienced slower population growth (5%) than the U.S. or the competitor state average (7.0%). Generally, there is a consistency between these population growth rates and total private employment growth during the same time period. The populations of South Carolina, North Carolina, Georgia, Virginia, and Tennessee grew at a faster rate than the U.S.; Kentucky, however, grew at about 55 percent of the U.S. rate. At 21.7 percent, Utah has the highest growth rate during this period, and West Virginia has the lowest (-2.3%); Kentucky has the 33rd highest growth rate among the states.

Percentage Change in Population 2007-2019, Kentucky, Competitor States, & the U.S.

Source: U.S. Census Bureau, ACS 1-year estimates
Regional Population Changes

Population growth rates within a state can serve as an indicator of economic trends. The population growth rate of Kentucky and its regions from the peak of the last economic expansion in 2007 to the present (2019) is shown below (a county-level map of these four regions is available in the glossary). Kentucky’s Urban Triangle experienced a 8.3 percent increase; South Central Kentucky is not far behind at 6 percent. However, the population in Western Kentucky only grew less than 1 percent and in Eastern Kentucky it declined by nearly 4 percent. For comparison purposes, Kentucky’s overall population increased 5 percent (ACS 5-year estimate) over the same time period.

Population Change in Kentucky Regions, Peak of the Last Economic Expansion to the Present

(percent change, 2007 to 2019)

Source: Author’s calculations using data from the U.S. Census Bureau, ACS 5-year estimates. See glossary for map of Kentucky regions by county.
From the peak of the last economic expansion in 2007 to the present (2019), there have been some significant county-level population changes in Kentucky. As illustrated in the map below, the population in several counties was lower in 2019 compared to 2007. Overall, in fact, 62 counties, largely in Eastern Kentucky, but several in the western part of the state, lost population during this time period. The five largest declines were in Lee (-12.4%), Martin (-11.9%), Leslie (-11.2%), Harlan (-10.9), and Fulton Counties (-10.7%). On the other hand, population growth in much of Northern and Central Kentucky has been strong. The five fastest growing counties all experienced double-digit increases, and include Scott (25.7%), Warren (19.8%), Shelby (17.3%), Boone (16.5%), and Jessamine Counties (15.2%). By comparison, Kentucky’s population increased by 5 percent during this twelve year period.

Source: U.S. Census Bureau
MINORITY POPULATION

In today’s global economy, diversity is increasingly important and recognized as a community asset. In 2019, racial minorities comprised about 28 percent of U.S. and competitor state populations, and only 13 percent of the Kentucky population. Kentucky’s racial composition breaks down like this: white non-Hispanic (86.7%), black or African American (8.1%), Asian (1.6%), and other (3.6%). Kentucky’s minority population is more concentrated in the state’s metropolitan areas; in 2010, four of every five minority persons in Kentucky lived in metropolitan areas. While not depicted in the chart below, those who identify as Hispanic or Latino are significantly lower in Kentucky (3.8%) compared to the U.S. (18.4%) and competitor states (8.3%).

Population by Race, 2019, Kentucky, Competitor States, and the U.S.

(percent of individuals)

Source: American Community Survey, 2019 1-year estimate
WHITE, NON-HISPANIC POPULATION

An estimated 60.7 percent of the U.S. population and 84.6 percent of the Kentucky population is white (alone), non-Hispanic (based on the 2019 5-Year U.S. Census data). Using this as a measure of diversity, Christian County—where Ft. Campbell is located—is the state’s most diverse county at 65.6 percent white (alone), non-Hispanic. Jefferson, Fulton, and Fayette Counties are second, third, and fourth at 67.4, 70.8, and 71 percent, respectively. The state’s least diverse counties are clustered mainly in the east, with several counties at or above 95 percent comprised of white (alone), non-Hispanic. As we indicated on the previous page, diversity is increasingly viewed as a necessary community characteristic for creating a vibrant and robust local economy.

White Alone (non-Hispanic) Population, 2015-2019

Source: American Community Survey, 2019 5-Year Estimate, Table DP05
Immigrants strengthen our communities and bolster our economy. In a September 2017 paper, *Immigrants Benefit the Community and Economy*, authored by University of Kentucky economist Dr. Jenny Minier, she notes that “more than 40% of Fortune 500 companies, including American icons like Apple, Budweiser, Google, and McDonald’s, were founded by immigrants or the children of immigrants.” Moreover, Minier cites a recent study which finds that “over half of the 87 technology startups valued at over $1 billion were co-founded by immigrants, and on average, these companies had created 760 new jobs.” The economic contribution of immigrants extends, of course, across the entire range of jobs in the labor force, from those who harvest agricultural products to those occupying Fortune 500 CEO suites. The percentage of foreign-born individuals in Kentucky is 4.4 percent, just over half of the competitor state average (7.8%) and about a third of the U.S. average (13.7%).

*Source: American Community Survey, Table B05002 2019 1-Year Estimate
Note: “CS” is the weighted average of the competitor states.*
Kentucky’s percentage of foreign-born population is relatively low, but it is approaching ten percent in a few areas, such as Fayette (9.7%) and Warren Counties (9.1%). As one can see on the map below, the Kentucky counties with the highest percentages of foreign-born individuals are disproportionately located in the urban triangle, the area of the state’s economic engine. Nonetheless, even in counties with a small number of foreign-born individuals, these immigrants frequently play an outsized role in their local communities as business owners, entrepreneurs, and health care providers. Indeed, many are serving in medically underserved areas of rural Kentucky. One telling statistic, that is indicative of their impact, is this: the percentage of U.S. or native-born Kentuckians with a Bachelor’s degree or higher is about 23 percent, while the percentage of foreign-born Kentuckians with a Bachelor’s or higher is around 34 percent—one out of three.
Population by Age Group

Kentucky’s population is aging, evidenced by the median age increasing from 35.9 years in 2000 to 38.1 in 2010—and on to 39.1 in 2018. The U.S. median age, by comparison, is slightly lower, evidenced by 37.2 in 2010 and 38.2 in 2018. The number of persons in Kentucky aged 65 and above increased by 152,000, or by 26 percent, from 2000 to 2018; by comparison, this age group increased by 30 percent in the U.S. However, at 16.4 percent of Kentucky’s total population, it represents about the same proportion as in the U.S. (16%). The same is true for the other age groups—the distribution of age groups in Kentucky is more or less consistent with the U.S. percentages. For example, the prime working age group, 25 to 54, comprises 38.3 percent of Kentucky’s total population, compared to 39.2 percent in the U.S.

Source: U.S. Census Bureau
Median Age

The county-level median age in Kentucky ranges from a low of 28.4 in Christian County to a high of 48.9 in Lyon County. The median is the middle point in a distribution; it is the point where half the population is above and half is below. The median ages for the U.S. and Kentucky are 37.9 and 38.7, respectively. In general, counties with military installations or college campuses will have lower median ages. In addition to Christian, four other counties have median ages below 35: Rowan, Warren, Madison, and Fayette. On the other hand, six Kentucky counties have median ages 45 or older: Livingston, Trigg, Cumberland, Menifee, Hickman, and Lyon.

Median Age by Kentucky County, 2014-2018

![Map of Kentucky showing median age by county](map.png)

Source: American Community Survey, 2018 5-Year Estimate, Table B01002
Public Finance

Placing tremendous stress on government finances, the pandemic’s economic impact has affected both sides of the public finance ledger. It has increased selected governmental expenditures, such as unemployment insurance, while reducing or delaying revenue collection—and as of late December 2020, it is uncertain whether the federal government will provide pandemic relief funds directly to state and local governments. A Council of State Governments report, COVID-19: Fiscal Impact to States and Strategies for Recovery, expects that, overall, state general funds will experience a $211.2 billion (-11.2%) fiscal shortfall due to reduced revenue and increased Medicaid expenses. However, Kentucky’s general fund revenues held up fairly well—bolstered by federal stimulus such as unemployment insurance benefits.

Kentucky ranks 19th on the Tax Foundation 2021 State Business Tax Climate Index. This Index is designed to show how well states structure their tax systems. States are evaluated on five state taxes: corporate, individual income, sales, property, and unemployment insurance. Kentucky receives its highest rank on the sales tax (13th) and its lowest on the unemployment insurance tax (49th).

Conversely, Kentucky’s overall fiscal condition was ranked 46th by the Mercatus Center at George Mason University in its 2018 Ranking the States by Fiscal Condition report. Their evaluation, which is derived from fiscal year 2016 state financial data, rests on 13 different financial indicators. Using

continued on the next page
these indicators, they create five dimensions of solvency to assess each state’s short- and long-term fiscal prospects. Unfortunately, Kentucky performs below the U.S. average on each of the five dimensions: 39th on budget solvency, 43rd on trust fund solvency, 43rd on service-level solvency, 40th on cash solvency, and 46th on long-run solvency.

To be certain, there are budgetary challenges on the horizon. Kentucky’s public pension programs, for example, are in dire financial shape, as evidenced by an estimated unfunded actuarial accrued liability (UAAL) that equaled $37.4 billion in 2019. By multiple measures, Kentucky’s public pension system ranks as one of the most financially troubled among the 50 states. The funded ratios of the state’s major public sector pension plans have decreased over the last two decades, from 108 percent in 2001 to 45.5 percent in 2019—the lowest ratio among the states and DC.

Improving the funded ratio of Kentucky’s major public sector pension plans will likely require difficult decisions on spending priorities within the state budget. Kentucky’s required annual contribution to its public pension programs is equal to about 11 percent of state and local general revenue from own sources, the highest of any state. If the portion of state and local revenue going to pension funding continues to grow, it will either claim a larger portion of the budget and/or create pressure for increasing revenue to fund vital state programs and services.

Kentucky’s revenue growth kept pace with the economy from 2010 to 2019. Revenue growth rates are affected by both changes in the revenue base and tax rates. Most states’ revenue systems failed to keep pace with overall economic growth during the decade from 2000 to 2009 due to one or both of these factors. The Great Recession had a significant impact on both taxes and income during this period. Using the ratio between the compound annual growth rates (CAGR) of revenue and personal income, we compare Kentucky to the competitor states and the U.S. during four time periods. A ratio of 1.0 indicates that the revenue is growing at the same rate as the economy—a desirable outcome. For most states, the growth in total tax revenue slowed relative to the economy in the 2000s. Since 2010, the ratios have increased to around 1.04 and 1.10 among the competitor states and in the U.S., respectively; in Kentucky, the ratio is close behind at 0.98.

The COVID-19 recession has caused a major reshuffling of budgetary priorities, unexpected expenditures, and significant financial gaps. State and local governments will continue to work through these challenges—making difficult decisions along the way—with continued budgetary uncertainty for the foreseeable future.
Two sources of revenue—the individual income tax and the sales and use tax—account for 74.5 percent of Kentucky general fund revenue (FY2019). This figure illustrates how Kentucky’s revenue system has fundamentally changed since 1969. Nearly fifty years ago, the sales and use tax comprised about 51 percent of Kentucky’s general fund receipts, while income tax collections accounted for around 22 percent. However, by the mid-1980s, the income tax accounted for more general fund revenue than the sales and use tax. The changing distribution of tax receipts reflects more basic changes in the economy—the gradual shift away from making products and toward providing services. Most states, including Kentucky, tend to apply a broad-base sales tax to goods but not services. Consequently, the state’s tax base is gradually becoming narrower and losing elasticity—a measure of whether revenue is keeping pace with the economy.

Source: Authors’ calculations based on data from the Kentucky Finance and Administration Cabinet, the Kentucky Revenue Cabinet, and the Office of the State Budget Director.
GROWTH RATES, TAXES AND INCOME

Kentucky’s revenue growth kept pace with the economy from 2010 to 2019. Revenue growth rates are affected by both changes in the revenue base and tax rates. Most states’ revenue systems failed to keep pace with overall economic growth during the decade from 2000 to 2009 due to one or both of these factors. The Great Recession had a significant impact on both taxes and income during this period. Using the ratio between the compound annual growth rates (CAGR) of revenue and personal income, we compare Kentucky to the competitor states and the U.S. during four time periods. A ratio of 1.0 indicates that the revenue is growing at the same rate as the economy—a desirable outcome. In Kentucky, as well as in many of the competitor states, the growth in total tax revenue slowed relative to the economy in the 2000s. As shown in the graph, the ratio between Kentucky’s total tax CAGR and personal income CAGR declined to 0.73 with the competitor states declining to 0.76 and the U.S. to 0.83. Since 2010, the ratios have increased to around 1.04 and 1.10 among the competitor states and in the U.S., respectively; in Kentucky, the ratio is close behind at 0.98.

Source: U.S. Census Bureau, Bureau of Economic Analysis & State Government Tax Collections
Note: Total taxes are not adjusted for sales tax increases. Adjustments will produce slightly different results.
GENERAL FUND TAX RECEIPTS

Placing tremendous stress on government finances, the pandemic’s economic impact has affected both sides of the public finance ledger. It has increased selected governmental expenditures, such as unemployment insurance, while reducing or delaying revenue collection. Here we show Kentucky’s revenue, general fund tax receipts, from January to October of 2020. The green line shows our forecast of general fund tax receipts based on a 10-year trend from 2010 to 2019, and the black line shows the actual monthly general fund tax receipts as reported by the Kentucky Office of the State Budget Director. The typical April spike in collections occurred two months later in June. While occurring late, this revenue still arrived before the end of the fiscal year. On balance, from January to October, the state’s actual general fund tax receipts are nearly equal to the total amount we have forecasted for this ten-month period (e.g., within 99.7%).

A Council of State Governments report, COVID-19: Fiscal Impact to States and Strategies for Recovery, expects that, overall, state general funds will experience a $211.2 billion (-11.2%) fiscal shortfall due to reduced revenue and increased Medicaid expenses; they expect Kentucky’s combined fiscal shock, which examines the COVID-19 related budgetary impact relative to the pre-COVID-19 revenue forecast, to be relatively small compared to most states (-6.5%).

Source: The 10-Year Trend Forecast is estimated by the author, and the actual tax receipts come from the Kentucky Office of the State Budget Director Monthly Tax Receipt press releases.
Kentucky receives a significant amount of its total revenue from federal intergovernmental transfers. In 2018, this amounted to 27.3 percent of Kentucky’s total revenue. The competitor state average was about 18.8 percent and the U.S. average was about 18.1 percent. These transfers are mainly for health care (Medicaid), education, transportation, and public safety. On per capita basis, Kentucky received about $3,248 in revenue from federal transfers, compared to $2,230 and $2,365 for the competitor states and U.S., respectively. Alaska had the highest amount at $4,920 and Virginia the lowest at $1,354. These dollars have been adjusted to reflect state-level cost-of-living differences using regional price parity estimates from the U.S. Bureau of Economic Analysis.
STATE AND LOCAL OWN SOURCE REVENUE

Since states differ in the relative distribution of tax burdens between state and local governments, any comparison of revenue burdens among states requires a consideration of combined state and local revenue burdens. Here we report state and local own revenue burdens for Kentucky and its competitor states in 2018. On a per capita basis, Kentucky’s per capita own-source state and local revenue was $6,742 in 2018 (in constant 2019 dollars), lower than the competitor state average of $7,366 as well as the U.S. average of $8,054. North Dakota had the highest amount at $12,520 and Arizona the lowest at $5,562. These dollars have been adjusted to reflect state-level cost-of-living differences using regional price parity estimates from the U.S. Bureau of Economic Analysis.

Source: U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances
STATE AND LOCAL TAX REVENUE BY SOURCE

This figure shows the percentage of revenue collected by each reported tax source for Kentucky and a weighted-average of its competitor states and the U.S. (i.e., the average of all states and DC). Kentucky is significantly less reliant on property taxes than its competitors (and the U.S.), who raise a much larger share of local tax revenue from the property tax, and particularly those states to the north of Kentucky. Kentucky has no general sales tax option for any local governments, something a number of its competitor states (and 38 states in the U.S.) allow. Unlike many of its competitors, Kentucky allows local individual income (occupation license) taxation (only 13 states and DC permit local income taxation). Not surprisingly, then, Kentucky collects a smaller share of combined state and local tax revenues from sales taxation and more from income taxation.

State and Local Tax Revenue by Source, 2018
Kentucky, Competitor States, and the U.S.
(percent of total tax revenue)

Source: U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances
STATE AND LOCAL EXPENDITURES

Here, we present data that illustrate Kentucky’s state and local spending by selected functional categories: *Education*, which includes elementary and secondary education and higher education; *Public Protection*, which includes police, fire, and corrections; *Social Services*, which includes public welfare, public assistance, and Medicaid; *Community Development*, which includes libraries, natural resources, parks and recreation, and housing and community development; and *Infrastructure*, which includes highways, water, sewers, utilities, and solid waste. For Kentucky, the competitor states, and the U.S., these five categories account for around 80 percent of state and local government expenditures (2018). As a percentage of total state and local government expenditures, Kentucky spends about the same on education, more on social services, and less on public protection, community development, and infrastructure compared to the U.S. average. The Other category includes government administration, interest paid on debt, and insurance. However, as the figures on the following pages show (pages 234-243), when comparing per capita expenditures, a slightly different picture emerges. On a per capita basis, Kentucky expenditures are generally lower than the U.S. for every category except social services, where they have been about the same, but exceeded the U.S. since 2015.

Distribution of Selected State and Local Expenditures, 2018, Kentucky, Competitor States, and the U.S.

(Percent of total state and local expenditures)

Source: U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances
Education expenditures include elementary and secondary education, higher education, and other education such as adult, technical, or vocational education equal to or less than two years of college. State and local expenditures for education steadily increased on a per capita basis (in constant 2018 dollars) from 1995 until 2009-2010. These expenditures have been more or less stable since 2010 for Kentucky, the competitor states, and the U.S. When viewed over the 24-year period from 1995 to 2018, Kentucky has a higher percentage increase (47%) than the competitor states (32%) or the U.S. overall (37%). Kentucky has expended more of its cumulative gross domestic product on education during this time period (6.0%) than either the competitor states (5.4%) or the U.S. (5.3%). These investments have enabled the state to improve its educational standing relative to the other states. Research shows that investments in human capital—education—are vital for a state’s economic success. A highly educated population can create new enterprises with innovative and entrepreneurial activities, and a skilled labor force can attract new plants and factories. The “availability of skilled labor” ranks as the most important factor for respondents to the 2018 Annual Survey of Corporate Executive and Consultants on Site Selection, with 90.5 percent ranking it as either “important” or “very important.”

State and Local Education Expenditures, Per Capita, 1995-2018, Kentucky, Competitor States, and the U.S.

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance
Note: KY and CS data for 2001 and 2003 are interpolated.
One way to reasonably assess a state’s position relative to other states is by ranking the states and placing them into four more or less equal groups, or quartiles. Kentucky’s per capita state and local expenditures for education in 2018 are in the second quartile of states. Wyoming is the highest at $5,130 and Florida is the lowest at $2,074. Kentucky’s per capita spending is $3,298. These dollars have been adjusted to reflect state-level cost-of-living differences using regional price parity estimates from the U.S. Bureau of Economic Analysis.
COMMUNITY DEVELOPMENT EXPENDITURES

We combine four broad areas—libraries, natural resources, parks & recreation, and housing & community development—into a single category called community development. State and local expenditures for community development in Kentucky steadily increased on a per capita basis (in constant 2019 dollars) from 1995 until 2005-06, but have been more or less stable since that time. When viewed over the 24-year period from 1995 to 2018, Kentucky has a higher percentage increase (38%) than the competitor states (26%) or the U.S. overall (27%). Kentucky has expended less of its cumulative gross domestic product on community development during this time period (0.64%) than either the competitor states (0.71%) or the U.S. (0.79%). Quality of life factors, which can include social amenities like libraries, parks, and natural open spaces, ranks as the sixth most important factor for respondents to the 2018 Annual Survey of Corporate Executive and Consultants on Site Selection, evidenced by 82.8 percent ranking it as either “important” or “very important.”

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance
Note: KY and CS data for 2001 and 2003 are interpolated.
Community Development Expenditures in the U.S.

Here we place the states into four approximately equal groups called quartiles. With per capita spending of $388, Kentucky’s state and local expenditures for community development in 2018 are in the second quartile. Alaska is the highest state at $1,300 (DC is higher at $1,920) and Texas is the lowest at $247. These dollars have been adjusted to reflect state-level cost-of-living differences using regional price parity estimates from the U.S. Bureau of Economic Analysis.

Community Development Expenditures, 2018
(Adjusted dollars using 2018 Regional Price Parities)

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance, 2018
We combine five categories—public welfare, hospitals, health, social insurance, and veteran’s services—into a single category called social services; this covers expenditures associated with three Federal programs—Supplemental Security Income (SSI), Temporary Assistance for Needy Families (TANF), and Medicaid. State and local expenditures for social services increased steadily on a per capita basis (in constant 2019 dollars) from 1995 to 2018 in Kentucky, among the competitor states, and in the U.S. overall. The large increase in Kentucky beginning in 2014 reflects the effect of Medicaid expansion. When viewed over this 24-year period, Kentucky has a higher percentage increase (119%) than the competitor states (56%) or the U.S. (67%). Also, Kentucky expended more of its cumulative gross domestic product on social services during this time period (5.5%) than either the competitor states (4.4%) or the U.S. (4.3%).

State and Local Social Services Expenditures, Per Capita, 1995-2018, Kentucky, Competitor States, and the U.S.

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance
Note: KY and CS data for 2001 and 2003 are interpolated.
Social Services Expenditures in the U.S.

Here we place the states into four approximately equal groups called quartiles. With per capita spending of $3,967, Kentucky’s state and local expenditures for social services in 2018 are in the fourth or top quartile. Wyoming is the highest state at $4,748 (DC is higher at $5,981) and Connecticut is the lowest at $1,696. These dollars have been adjusted to reflect state-level cost-of-living differences using regional price parity estimates from the U.S. Bureau of Economic Analysis.

Social Services Expenditures, 2018
(Adjusted dollars using 2018 Regional Price Parities)

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance, 2018
PUBLIC PROTECTION EXPENDITURES

We combine four categories—police protection, fire protection, corrections (e.g., prisons and jails), and protective inspection (e.g., building & construction inspections and licensing)—into a single category called public protection. State and local expenditures for public protection increased moderately on a per capita basis (in constant 2019 dollars) from 1995 to 2018 in Kentucky, among the competitor states, and in the U.S. overall. When viewed over this 24-year period, Kentucky (44%) has increased at a higher rate than the competitor states (33%) and the U.S. overall (28%). Also, Kentucky expended about the same percentage of its cumulative gross domestic product on public protection during this time period (1.1%) as the competitor states (1.3%) and the U.S. (1.4%).

State and Local Public Protection Expenditures, Per Capita, 1995-2018, Kentucky, Competitor States, and the U.S.

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance
Note: KY and CS data for 2001 and 2003 are interpolated.
PUBLIC PROTECTION EXPENDITURES IN THE U.S.

Here we place the states into four approximately equal groups called quartiles. With per capita spending of $602, Kentucky’s state and local expenditures for public protection in 2018 are in the first or lowest quartile. In fact, Kentucky has the fourth lowest value of any state; Utah is the lowest with $580. Alaska is the highest state at $1,493 (DC is higher at $1,610). These dollars have been adjusted to reflect state-level cost-of-living differences using regional price parity estimates from the U.S. Bureau of Economic Analysis.

Public Protection Expenditures, 2018
(Adjusted dollars using 2018 Regional Price Parities)

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance, 2018
INFRASTRUCTURE EXPENDITURES

We combine several expenditure categories into a single catchall to estimate infrastructure expenditures; this includes highways, air transportation, sea & inland ports, parking facilities, sewerage, solid waste management, and utilities like water supply, electric power, gas supply & transit. State and local expenditures for infrastructure have steadily increased on a per capita basis (in constant 2019 dollars). When viewed over the 24-year period from 1995 to 2018, Kentucky has a higher percentage increase (24%) than the competitor states (14%) or the U.S. (22%). Kentucky has expended slightly more of its cumulative gross domestic product on infrastructure (3.0%) than the competitor states (2.7%) or the U.S. (2.9%). Numerous infrastructure factors are ranked high in the 2018 Annual Survey of Corporate Executive and Consultants on Site Selection, led by “highway accessibility,” which listed as the third most important site selection factor with 87.2 percent indicating it is either “important” or “very important.”

State and Local Infrastructure Expenditures, Per Capita, 1995-2018, Kentucky, Competitor States, and the U.S.

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance
Note: KY and CS data for 2001 and 2003 are interpolated.
INFRASTRUCTURE EXPENDITURES IN THE U.S.

Here we place the states into four approximately equal groups called quartiles. With per capita spending of $1,439, Kentucky’s state and local expenditures for infrastructure in 2018 are in the second quartile. Alaska is the highest state at $3,971 (DC is higher with spending of $6,665) and New Hampshire is the lowest at $908. These dollars have been adjusted to reflect state-level cost-of-living differences using regional price parity estimates from the U.S. Bureau of Economic Analysis.

Infrastructure Expenditures, 2018
(Adjusted dollars using 2018 Regional Price Parities)

Source: U.S. Census Bureau, Annual Survey of State and Local Government Finance, 2018
Debt

State and local government debt is defined as “all interest-bearing short-term credit obligations and all long-term obligations incurred in the name of the government and all its dependent agencies, whether used for public or private purposes.” Governments issue bonds and incur debt for big-ticket items like roads or large construction projects. Nationally, state and local governments had over $3.1 trillion in outstanding debt in 2018, with 62.5 percent at the local government level and 37.5 percent at the state government level. The figure shows combined state and local debt per capita, with Kentucky second among the competitor states at $12,700, 30 percent of which is held by state government. The U.S. per capita debt for state and local governments is $9,718. These dollars have been adjusted to reflect state-level cost-of-living differences using regional price parity estimates from the U.S. Bureau of Economic Analysis.

Debt Outstanding, Per Capita, 2018
Kentucky, Competitor States, and the U.S.
(state and local debt, by total, RPP adjusted $s)

Source: U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances
Kentucky’s public pension programs are in dire financial shape, evidenced by an estimated $28.6 billion unfunded liability (based on 2018 actuarial assumptions). By multiple measures, Kentucky’s public pension system ranks as one of the most financially troubled among the 50 states. There are eight public pension programs: County Employees’ Retirement System (Hazardous & Non-Hazardous); Kentucky Employees’ Retirement System (Hazardous & Non-Hazardous); State Police Retirement System; Judicial Retirement Fund; Legislators’ Retirement Fund; and the Teachers’ Retirement System. In 2018, these pension funds were funded at approximately 45 percent of the level needed to be fully funded—one of the lowest funded ratios in the country. The map below, which is produced from 2018 data published in the PEW Charitable Trusts, *The State Pension Funding Gap: 2018* (June 2020), shows Kentucky’s position relative to other states. The state’s ability to improve the finances supporting these public pension programs is tightly linked to the state’s overall financial health, as discussed on the preceding pages.

<table>
<thead>
<tr>
<th>State Public Pension Funded Ratios, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Funded</td>
</tr>
<tr>
<td>50%‐69%</td>
</tr>
<tr>
<td>60%‐79%</td>
</tr>
<tr>
<td>80%‐99%</td>
</tr>
<tr>
<td>Over 90%</td>
</tr>
<tr>
<td>Below 60%</td>
</tr>
</tbody>
</table>

Source: The PEW Charitable Trusts
The funded ratios of major public sector pension plans have decreased over the last two decades. The chart below reflects the funded ratios for 200 public pension plans administered by state and local governments from 2001 to 2019. These plans cover 95 percent of public pension membership and assets nationwide. Kentucky’s funded ratio dropped precipitously from over 100 percent in 2001 to about 46 percent in 2019, a steeper decline than the competitor states or the U.S. as a whole experienced. This ratio reflects traditional GASB 25 standards and is equal to actuarial assets divided by actuarial liabilities. The Center for Retirement Research at Boston College, which produces this database, includes three Kentucky state pension plans and one local public pension plan: the County Employees Retirement System (CERS); the Kentucky Employees Retirement System (KERS); the Teachers’ Retirement System of Kentucky (TRS); and the Lexington-Fayette County Policemen’s and Firefighters’ Retirement Fund. In 2019, the assets for these four plans equaled about $33.2 billion while liabilities equaled around $73 billion. The unfunded actuarial accrued liability (UAAL) equaled $37.4 billion. Kentucky’s funded ratio of 45.5 percent ranks 51st, the lowest ratio among the states and DC. Improving the funded ratio will require substantial future financial commitments to the state’s public pension systems.

PENSION FUNDING

Improving the funded ratio of Kentucky’s major public sector pension plans will likely require difficult decisions on spending priorities within the state budget. Kentucky’s required annual contribution to its public pension programs is equal to just over 11 percent of state and local general revenue from own sources, which ranks it first among the states. California comes in second at just over 10 percent, and Illinois third at just under 10 percent. If the portion of state and local revenue going to pension funding continues to grow, it will either claim a larger portion of the budget and/or create pressure for increasing revenue to fund vital state programs and services. By comparison, the U.S. and competitor state averages are around 6 percent, as illustrated in the figure below.

Annual Required Contribution to Major Public Sector Pension Plans as a Percentage of State & Local General Revenue from Own Sources, 2001 to 2019

Agriculture and GDP—U.S. Department of Commerce, Bureau of Economic Analysis, Gross domestic product (GDP) by state (millions of current dollars).

Air Quality (part 1)—Kentucky Energy and Environment Cabinet, Department for Environmental Protection, Division for Air Quality <air.ky.gov/>. The data on air quality trends were obtained via email from the Jennifer Miller, Division for Air Quality on December 15, 2019. Notes about specific pollutants: O_3—Based upon annual statewide averages of all fourth highest daily maximum 8-hour concentrations [29 sites used for 2018 average (ppm)]; NO_2—Based upon annual statewide averages of all 98th percentile daily concentrations 1-hour averages [7 sites used for 2018 average (ppm)]; and SO_2—Based upon annual statewide averages of all 99th percentile daily maximum 1-hour concentrations [12 sites used for 2018 average (ppm)].

Air Quality (part 2)—See the endnote above for detailed information on the source. Notes about specific pollutants: CO—Based upon annual statewide averages of all second highest daily maximum 1-hour concentrations [3 sites used for 2018 average (ppm)]; $PM_{2.5}$—Based upon annual statewide averages of all 98th percentile 24-hour concentrations [19 sites used for 2018 average (μ/m3)]; and PM_{10}—Based upon annual statewide averages of all maximum 24-hour concentrations [8 sites used for 2018 average (μ/m3)].

Associate’s Degrees—Estimated by the author using American Community Survey, 2019 1-Year Estimate, Public Use Microdata Sample (PUMS) data.

Bridges & Problem Bridges by County—U.S. Department of Transportation, Federal Highway Administration, Office of Bridges and Structures. The way bridges are classified has changed. Per an email from Samantha Lubkin, with the FHWA Office of Bridges and Structures, on November 6, 2017: Functionally obsolete is a legacy classification that was used to implement the Highway Bridge Program, which was discontinued with the enactment of MAP-21. As a result, fiscal year 2015 was the last year outstanding Highway Bridge Program funds could be obligated on eligible projects, including ones with bridges that were once classified as functionally obsolete. Therefore, FHWA is no longer tracking this measure, and will not be publishing it on our website for the 2016 data forward. Our focus has shifted to a performance-based program as established in MAP-21 and continued in the Fast Act. As such, we encourage the use of the Good-Fair-Poor bridge condition measures outlined in the Pavement and Bridge Condition Performance Measures final rule, published in January of 2017: <www.fhwa.dot.gov/tpm/rule.cfm>. A summary of bridge conditions for the last 5 years can be found here: <www.fhwa.dot.gov/bridge/nbi/condition.cfm>. The bridge data for counties is available here: <www.
Bright Spot Schools—Kentucky Schools as Educational Bright Spots, Center for Business and Economic Research, <http://cber.uky.edu/>.

Chronic Disease by County (Number & Percent)—Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey Data. Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2012-2016. To estimate county-level percentages and numbers we use a special grouping of counties developed by the University of Kentucky Markey Cancer Control Program and College of Public Health under the direction of the Kentucky Department for Public Health. The text references this peer-reviewed research: Asay GRB, Roy K, Lang JE, Payne RL, Howard DH. Absenteeism and Employer Costs Associated With Chronic Diseases and Health Risk Factors in the US Workforce. Prev Chronic Dis 2016;13:150503. DOI: http://dx.doi.org/10.5888/pcd13.150503.

Coal Production—Kentucky Energy and Environment Cabinet, Kentucky Quarterly Coal Reports <energy.ky.gov/Pages/CoalFacts.aspx>.

College Attainment—Estimated by the author using American Community Survey, 2019 1-Year Estimate, Public Use Microdata Sample (PUMS) data.

College Readiness—The Condition of College & Career Readiness, 2020, various state reports, ACT, Inc. The Competitor States values reflect a weighted average of the 12 states.

Community Banks—FDIC Community Banking Study microdata, analyzed by the author <https://www.fdic.gov/regulations/resources/cbi/study.html>.

Community Development Expenditures (in the U.S.)—U.S. Census Bureau, 2017 Annual Surveys of State and Local Government Finances <www.census.gov/govs/estimate/>. We use the following Census Bureau Item Codes to create this category: E52, F52, G52, E55,

County Population Changes—Census data obtained from the U.S. Census Bureau.

County-Level Innovation Index—Innovations in America’s Regions, a project funded in part by the U.S. Commerce Department’s Economic Development Administration. Work was conducted by the Purdue Center for Regional Development, the Indiana Business Research Center at Indiana University’s Kelley School of Business, and other research partners. Data are available online at <www.statsamerica.org/innovation/index.html>.

COVID-19 Deaths—CDC provisional death counts deliver the most complete and accurate picture of lives lost to COVID-19. They are based on death certificates, which are the most reliable source of data and contain information not available anywhere else, including comorbid conditions, race and ethnicity, and place of death. These data are current as of October 21, 2020. We have pooled these county-level data to the hospital referral region and report deaths per 100,000 population. The CDC data are available at <https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm#StateCountyData>.

COVID-19 Induced Losses—Combining two variables converted to Z-scores, year-over-year county-level job changes (August 2019 to August 2020) and county-level deaths attributed to COVID-19 that have been aggregated to hospital referral regions (HRR) and normalized by total population, this county-level assessment of losses uses BLS data on total employed and CDC data on provisional death counts. See “COVID-19 Deaths” and “Employment-Population Ratio & the Pandemic” for information the data sources.

Dams—National Inventory of Dams <http://nid.usace.army.mil/>, data is current as of November 2019. The data on the classification of dams into quality categories, such as poor or unsatisfactory, come from the Association of State Dam Officials <http://damsafety.org/> via email, received in March, 2018.

Debt—U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances <www.census.gov/estimates>.

Disconnected Young Adults—Percentages are estimated from 2019 1-year PUMS data. In addition to the age variable (AGEP), there are three variables used to create this recoded variable: ESR—Employment Status Recode (where ESR=3 or 6); SCHL—Educational Attainment (where SCHL<=19); and SCH—School Enrollment (where SCH=1).

Drug Overdose Death Rate—Author’s analysis of data from the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics, Multiple Cause of Death 1999-2018 on CDC WONDER Online Database.

Education Expenditures (in the U.S.)—U.S. Census Bureau, 2017 Annual Surveys of State and Local Government Finances <www.census.gov/govs/estimate/>. We use the following Census Bureau Item Codes to create this category: E12, F12, G12, E16, E18, F16, F18, G16, G18, E21, F21, G21, and J19.

Education Index—Refer to Michael T. Childress, “Kentucky’s Educational Performance & Points of Leverage,” CBER Issue Brief, December 2015 <cber.uky.edu/>.

Educational Spending ROI—See Educational Index above.

Employment by Education—Refer to Christopher R. Bollinger, “Want a Job? Get a College Degree,” CBER Issue Brief, October 2015 <cber.uky.edu/>.

Employment-Population Ratio & The Pandemic—Bureau of Labor Statistics <https://download.bls.gov/pub/time.series/la/>. We calculate the percentage change in the employment-population ratio (total employed divided by population that is 16 years and older), from August 2019 to August 2020.

Family Income by Education—Estimated by the author using data courtesy Steven Ruggles, Sarah Flood, Ronald Goeken, Josiah Grover, Erin Meyer, Jose Pacas and Matthew Sobek. IPUMS USA: Version 9.0 [ACS 2014 to 2018]. Minneapolis, MN: IPUMS, 2019. https://doi.org/10.18128/D010.V9.0. To estimate the independent effect of education, we used a multiple regression model that utilized mostly dummy variables (e.g., EMPLOY, LESSHS, SOMECOL, BACHORMORE, NOTMETRO, METROCITY, METRONOTCITY, METROMIXED, GENDER, AGE_25_34, AGE_35_44, AGE_45_54, AGE_55_64, OVER65, WHITEONLY); we also included YEAR. The omitted variables are high school education, aged less than 25, and metropolitan status indeterminable (mixed).

Farms—These data come from various sources, including the Kentucky Department of Agriculture’s annual report, Kentucky Agricultural Statistics and the United States Department of Agriculture, Farms and Land in Farms, various years.

Food Insecurity—Author’s analysis of data from Sarah Flood, Miriam King, Steven

Foreclosures—Mortgage Bankers Association, National Delinquency Survey.

Foreign-Born Population (by County)—U.S. Census Bureau, ACS 2018 1- and 5-Year Estimates, Table B05002.

General Fund Receipts by Source—Kentucky Finance and Administration Cabinet and the Kentucky Revenue Cabinet, Annual Reports, various years.

Gini Index (by State and County)—U.S. Census Bureau, American Community Survey, various years.

Growth Rates, Taxes and Income—U.S. Census Bureau, Bureau of Economic Analysis & State Government Tax Collections.

Health by Education—Estimated using multiple regression analysis on CDC BRFSS data, pooled 5 years of data (2015-2019). Other model variables include education, income, gender, age and race. The results shown in the graph reflect the net effect of education on health while holding other factors (i.e., income, gender, age and race) constant.

Health-Based Violations—United States, Environmental Protection Agency, Safe Drinking Water Information System data, various years.

High School Attainment—Estimated by the author using American Community Survey, 2019 1-Year Estimate, Public Use Microdata Sample (PUMS) data.

High School Graduation Rate—U.S. Department of Education, EDFacts Data Group 695, School year 2017–18; As of September 23, 2019 for all states except Utah; Utah data were submitted last and as from November 7, 2019.

High-Technology Establishments—Using the National Science Foundation and Milken Institute designations of 4-digit NAICS codes and County Business Patterns data on number of establishments, we calculate the percentage that are considered high-tech establishments. Here are the 50 NAICS codes used: 1131, 1132, 2111, 2211, 3241, 3251, 3252, 3253, 3254, 3255, 3259, 3332, 3333, 3336, 3339, 3341, 3342, 3343, 3344, 3345, 3346, 3353, 3364, 3369, 4234, 4861, 4862, 4869, 5112, 5161, 5171, 5172, 5173, 5174, 5179, 5181, 5182, 5211, 5232, 5413, 5415, 5416, 5417, 5511, 5612, 8112, 3391, 5121, 5191, 6215.

Hourly Wages—These data are part of the CPS Outgoing Rotation Group. For this analysis, the data were downloaded from the Center for Economic and Policy Research (CEPR) web site at <ceprdata.org>. We use the variable “wage3” for this analysis.

Household Income Ratio—See Household Income Growth above for data source information.

Household Income—See Household Income Growth above for data source information. Household income includes income of the householder and all other people 15 years and older in the household, whether or not they are related to the householder. The median is the point that divides the household income distribution into halves, one half with income above the median and the other with income below the median. The median is based on the income distribution of all households, including those with no income. The distributional data is a one-year (2018) estimate from the American Community Survey.

Housing Starts—U.S. Census Bureau.

Income Sources by Location—U.S. Department of Commerce, Bureau of Economic Development.

Infrastructure Expenditures (in the U.S.)—U.S. Census Bureau, 2017 Annual Surveys of State and Local Government Finances <www.census.gov/govs/estimate/>. We use the following Census Bureau Item Codes to create this category: E44, F44, G44, E45, F45, G45, E94, F94, G94, I94, E01, F01, G01, E87, F87, G87, E91, F91, G91, I91, E80, F80, G80, E60, F60, G60, E92, F92, G92, I92, E93, F93, G93, I93, E81, F81, and G81.

Labor Force Participation (by County) & (by Education)—American Community Survey, U.S. Census Bureau, 2018 1-year estimate (Table S2301). The county-level data are from the ACS 5-Year estimate (Table S2301).

Lead Risk—The methodology used in producing the county-level lead exposure risk levels is based on data from the 2014 American Community Survey 5-Year estimates. Specifically, we used census tract-level housing age and poverty data; each of these is responsible for a different component of lead exposure risk. This data enumerates the number of households in each stratum of building age and poverty level, so to yield county-level data, we simply summed along the first five digits of GeoID2: the county portion of the unique census tract identifier. Proceeding, we used coefficients produced by a team at the Washington State Department of Health and Vox media to produce two regressions: 1) lead exposure risk due to housing; and, 2) lead exposure risk due to poverty. Then each of those were normalized and these z-scores were summed, with 58% weight on housing risk and 42% on poverty. Finally, this “raw score” was sorted into deciles, yielding the lead exposure risk estimates. More information is available at <www.vox.com/a/lead-exposure-risk-map>.

Local Food Suppliers—U.S. Department of Agriculture, 2012 Census of Agriculture (Table 43: Selected Practices). Personnel with the Kentucky Department of Agriculture
provided data on CSA and farmers’ markets that is discussed in the narrative.

Median Age—U.S. Census Bureau, ACS 1-Year estimate.

Medicaid Beneficiaries—Kaiser Family Foundation, <www.statehealthfacts.org> and Centers for Medicare & Medicaid Services, State/County Penetration File, (various years).

Mining and Coal—These data are from the Bureau of Economic Analysis and the Energy Information Administration, Annual Coal Report, various years.

Minority Population—U.S. Census Bureau, ACS 1-Year estimate, Table B02001.

Motor Gasoline Expenditures—U.S. Energy Information Administration, State Energy Data System.

Natural Gas Supplanting Coal—U.S. Energy Information Administration, Electricity Net Generation Total (All Sectors).

Net Earnings per Capita (by County)—U.S. Department of Commerce, Bureau of Economic Analysis.

Net Earnings—U.S. Department of Commerce, Bureau of Economic Analysis.

Nonprofits—Internal Revenue Service, Exempt Organizations Business Master File (2020, October).

Organic Farming—USDA 2017 Census of Agriculture.

Patents (by County)—U.S. Patent and Trademark Office, Utility Patents <www.uspto.gov/web/offices/ac/ido/oeip/taf/cst_utlh.htm>. Population data are from the U.S. Census Bureau <www.census.gov>. The competitor states is a weighted average of AL, GA, IL, IN, MS, MO, NC, OH, SC, TN, VA, and WV.

Per Capita Personal Income—U.S. Department of Commerce, Bureau of Economic Analysis, SA1-3 Personal income summary.

Population Totals—U.S. Census Bureau, Urban and Rural Population: 1900 to 1990 <www.census.gov/population/www/censusdata/files/urpop0090.txt>. The 2000 and 2010 population totals were obtained from the Census totals available at <www.census.gov>. The competitor state average of 41 percent increase is a weighted average of the 12 competitor states.

Poverty Rate by County—U.S. Census Bureau, American Community Survey, 2018 5-Year Estimates.

Public Assistance by Education—U.S. Census Bureau, 2019 1-Year, Public Use Microdata Sample (PUMS). Four variables are used from the 2019 PUMS to create the public assistance variable: FS - Food Stamps (SNAP); HINS4 - Medicaid; PAP - Public Assistance Income; and SSIP - Supplemental Security Income. Using multiple regression analysis, we estimate the net effect of education on whether one has received public assistance while holding gender, income, race and age constant.

Public Participation in the Arts—Authors’ analysis of data from Sarah Flood, Miriam King, Steven Ruggles, and J. Robert Warren. Integrated Public Use Microdata Series,

Public Pre-K Enrollment—*The State of Preschool 2019: State Preschool Yearbook*, The National Institute for Early Education Research, estimates derived from Table 4 <nieer.org/yearbook>.

Public Protection Expenditures (in the U.S.)—U.S. Census Bureau, 2017 Annual Surveys of State and Local Government Finances <www.census.gov/govs/estimate/>. We use the following Census Bureau Item Codes to create this category: E04, F04, G04, E05, F05, G05, E62, F62, G62, E24, F24, G24, E66, F66, and G66.

Regional Population Change—U.S. Census Bureau.

Revenue from Federal Transfers—U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances <www.census.gov/govs/estimate/>. These per capita estimates have been adjusted to reflect cost-of-living differences across the states using the 2018 regional price parity estimates from the Bureau of Economic Analysis.

Rural Population—U.S. Census Bureau, Urban and Rural Population: 1900 to 1990 <www.census.gov/population/www/censusdata/files/urpop0090.txt>. The 2000 and 2010 population totals were obtained from the Census totals available at <factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml>. The competitor state average is a weighted average of the 12 competitor states.

SBIR/STTR Awards by County—Small Business Innovation Research, Small Business Technology Transfer <www.sbir.gov/past-awards>.

Science & Technology Index—Milken Institute, *2018 State Technology and Science Index* <www.milkeninstitute.org>.

Science and Engineering Graduates—Calculated from the Integrated Postsecondary
Education Data System (IPEDS) using 2013 STEM-designed CIP codes. Note that the STEM degrees are normalized using the number of individuals in the population 20 to 24 years old, but this does not mean that all of these degrees were conferred upon individuals in this age range.

Selected Educational Indicators—Refer to Michael T. Childress, “Kentucky’s Educational Performance & Points of Leverage,” CBER Issue Brief, December 2015 <cber.uky.edu/>.

Selected Obstacles to Education—Refer to Michael T. Childress, “Kentucky’s Educational Performance & Points of Leverage,” CBER Issue Brief, December 2015 <cber.uky.edu/>.

Social Determinants of Health—We use 24 variables organized around five broad thematic areas used in the U.S. Department for Health and Human Services, Healthy People 2020 framework: HEALTH (using data from the 2020 County Health Rankings, we use the number of Dentists, Mental Health Providers, and Primary Care Physicians (per capita), as well as the percentage of the population with health insurance); EDUCATION (high school graduation is obtained from the Kentucky Department of Education (KDE), using the four-year cohort numbers for the 2018-2019 academic year, successful transition to adulthood using higher education, work, and military, enrollment in higher education, also derived from the same data source, language and literacy data using the ACT Reading Benchmark numbers, and early childhood education and development data on kindergarten readiness); ECONOMIC STABILITY (poverty rate from the U.S. Census ACS, unemployment rate from BLS, food insecurity from Feeding America [Gundersen, C., A. Dewey, E. Engelhard, M. Strayer & L. Lapinski. *Map the Meal Gap 2020: A Report on County and Congressional District Food Insecurity and County Food Cost in the United States in 2018*]. Feeding America, 2020.], housing stability using U.S. Census estimates
of the number of households paying over 30 percent of income on rent, and Gini Index values from the Census ACS); SOCIAL (associational density data from 2018 County Business Patterns (NAICS 713910, 713940, 713950, 713990, 813110, 813410, 813910, 813920, 813930, and 813940), voter turnout for the 2016 general election data from the Kentucky State Board of Elections, the county-level response rate to the 2010 U.S. decennial census (U.S. Census Bureau), and the number of tax-exempt non-profit organizations (Business Master File, July 2020) from the National Center for Charitable Statistics.); NEIGHBORHOOD & BUILT ENVIRONMENT (ESHE Index on the availability of health food, severe housing problems using data from County Health Rankings, specified as the number of households experiencing overcrowding, high housing costs, or lack of kitchen or plumbing facilities. These data come from the Census Bureau and HUD’s Comprehensive Housing Affordability Strategy, crime rate data from the Kentucky State Police, a lead risk index generated from housing age and poverty, air pollution data from EPA, and water quality data from County Health Rankings which uses EPA data on health-based violations). We perform a principal component analysis on each of the five thematic areas and average the results at the county-level to generate a county score. All data are transformed and ordered so that a high positive number is considered “good” for health outcomes.

Social Services Expenditures (in the U.S.)—U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances <www.census.gov/govs/estimate/>. We use the following Census Bureau Item Codes to create this category: J67, J68, E74, E75, E77, F77, G77, E79, F79, G79, E73, E67, E36, F36, G36, E32, F32, G32, E22, F22, G22, E85, F85, G85, and J85.

Sources of Personal Income—U.S. Department of Commerce, Bureau of Economic Analysis, SA04 State income and employment summary.

State and Local Expenditures—U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances <www.census.gov/govs/estimate/>.

State and Local Tax Revenue by Source—U.S. Census Bureau, 2018 Annual Surveys of State and Local Government Finances <www.census.gov/govs/estimate/>.

Structural Deficit—Update of William Hoyt, William Fox, Michael Childress, and James Saunoris, Final Report to the Governor’s Blue Ribbon Commission on Tax Reform, September 2012, University of Kentucky, Center for Business and Economic Research

Technology Use by Education—Estimated using Current Population Survey Computer and Internet Use Supplement, November 2019. This is a measure of Internet use from any location and is constructed using these variables, where PEINHOME=1 OR PEINWORK=1 OR PEINSCHL=1 OR PEINCAFE=1 OR PEINTRAV=1 OR PEINLICO=1 OR PEINELHO=1 OR PEINOthr=1. More information available at the U.S. Department of Commerce, NTIA, Digital Nation Data Explorer <www.ntia.doc.gov/other-publication/2016/digital-nation-data-explorer>.

Toxic Releases—U.S. Environmental Protection Agency, Toxics Release Inventory, TRI Explorer <iaspub.epa.gov/triexplorer/tri_release.chemical>. These data are TRI On-site and Off-site Reported Disposed of or Otherwise Released (in pounds), for All industries, for All chemicals, 2019.

Transfer Payments by County—Bureau of Economic Analysis.

Value-Added Food Production—U.S. Census Bureau, Annual Survey of Manufactures, various years.

Volunteer Hours—These data are from the 2017 Current Population Survey (CPS) September Volunteer Supplement results, based on adults aged 15 and older.

Volunteer Rate by Education—These data are from the 2017 Current Population Survey (CPS) September Volunteer Supplement results, based on adults aged 25 and older.

Volunteer Rate—These data are from the 2017 Current Population Survey (CPS) September Volunteer Supplement results, based on adults aged 15 and older. Volunteers are considered individuals who performed unpaid volunteer activities through or for an organization at any point during the 12-month period, from September 1 of the prior year through the survey week in September of the survey year.

Wages and Education—CPS Outgoing Rotation Group. For this analysis, the data were downloaded from the Center for Economic and Policy Research (CEPR) web site at <ceprdata.org>. We use the variable “wage3” for this analysis.

White, Non-Hispanic Population—U.S. Census Bureau.

Youth Obesity—Centers for Disease Control and Prevention, Youth Risk Behavior
Surveillance System (YRBSS), various years <www.cdc.gov/healthyyouth/data/yrbs/data.htm>.
Glossary

Bankruptcy—A legal proceeding involving a person or business that is unable to repay outstanding debts.

Commodity—A product, either raw or manufactured, that can be purchased or traded.

Competitor States—States that are similar to Kentucky in terms of economic and demographic characteristics which are viewed as the main competitors to Kentucky for industrial development. There are twelve states: Alabama, Georgia, Illinois, Indiana, Mississippi, Missouri, North Carolina, Ohio, South Carolina, Tennessee, Virginia, West Virginia.

Kentucky’s Principal Competitor States

Compound Annual Growth Rate (CAGR)—The rate of increase in the value of a quantity that is compounded over several years.

Constant dollars—Nominal or current dollar amounts that are adjusted to remove the effect of inflation.

Consumer Price Index (CPI)—The U.S. Department of Labor, Bureau of Labor Statistics, defines the CPI as a “measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services.”

Current dollars—Also called nominal dollars, these dollar amounts are not adjusted to remove the effect of inflation and represent the current value of the dollar during a given year.

Dividends—The portion of the profits generated by a corporation that is dispersed to its shareholders.

Eastern Kentucky—Counties in Kentucky located in the eastern most Area Development Districts (ADDs), including Bath, Bell, Boyd, Bracken, Breathitt, Carter, Clay, Elliott, Fleming,
Floyd, Greenup, Harlan, Jackson, Johnson, Knott, Knox, Laurel, Lawrence, Lee, Leslie, Letcher, Lewis, Magoffin, Martin, Mason, Menifee, Montgomery, Morgan, Owsley, Perry, Pike, Robertson, Rockcastle, Rowan, Whitley, and Wolfe Counties.

Kentucky Regions

Export—Goods and/or services generated in one country and sold in another.

Functionally Obsolete (FO) (Bridges)—“A bridge is considered ‘functionally obsolete’ when it does not meet current design standards (for criteria such as lane width), either because the volume of traffic carried by the bridge exceeds the level anticipated when the bridge was constructed and/or the relevant design standards have been revised.” See “2010 Status of the Nation’s Highways, Bridges, and Transit: Conditions and Performance.”

Gini (coefficient) Index—A measure of income dispersion, ranging from zero, which indicates perfect equality, to one, which indicates absolute inequality. A higher number indicates more concentration of income in fewer hands, with a value of one indicating that one person holds all the income.

Globalization—An adjective describing the interdependent relationship between national economies that has both positive and negative impacts on international markets.

Great Recession—The period of decline in annual real world gross domestic product per capita experienced in the U.S. from December of 2007 until June of 2009, leading to a decrease international trade, a notable rise in unemployment, and deflated commodity prices.

Gross Domestic Product (GDP)—The total value of a country’s goods and services. This includes private consumption, investment, government spending, and exports (subtracting imports from this value).

Inflation—The phenomenon where the price of goods and services increases, while the value of the currency used to purchase those items remains stagnant; getting less
“bang for your buck.”

Interest—The rate lenders charge borrowers to compensate for risk attributed to making funds available to borrowers, also known as the cost of borrowing

Mean (syn Average)—The sum of all values divided by the total number of values.

Median—The most central number in a data set; the number separating the upper half of the sample/population from the lower half.

Middle-class—The Census Bureau has no official definition of middle-class. See U.S. Census Bureau; “Middle Class in America,” (2010) U.S. Department of Commerce, Economics and Statistics Administration. However, there are many definitions of “middle class” and opinions on what should be included when categorizing households (e.g., income, net worth, government transfers, etc.).

Nominal dollars—An unadjusted dollar value that reflects the historical value; it has not been adjusted to remove the effect of inflation.

Outsourcing—Transferring business activities outside of a firm in order to reduce costs.

Patent—A property right granted by the government of the United States of America to an inventor “to exclude others from making, using, offering for sale, or selling the invention throughout the United States or importing the invention into the United States” for a limited time in exchange for public disclosure of the invention when the patent is granted.

Per Capita—An adjustment made to reflect the size of the population. For example, per capita income represents the level of income for every child, woman, and man in the base population.

Personal Income—Income received by persons from all sources. It includes income received from participation in production as well as from government and business transfer payments. It is the sum of compensation of employees (received), supplements to wages and salaries, proprietors’ income with inventory valuation adjustment (IVA) and capital consumption adjustment (CCAdj), rental income of persons with CCAdj, personal income receipts on assets, and personal current transfer receipts, less contributions for government social insurance.

Poverty Rate—The percentage of people (or families) living below the poverty line ($12,488 for individuals; $25,094 for a family of four, 2017 thresholds).

Poverty—The Census Bureau uses a set of money income thresholds that vary by family size and composition to determine who is in poverty. If a family’s total income is less than the family’s threshold, then that family and every individual in it is considered in poverty. The official poverty thresholds do not vary geographically, but they are updated for inflation using Consumer Price Index (CPI-U). The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps).

Property Crimes—In the FBI’s Uniform Crime Reporting (UCR) Program, property crime includes the offenses of burglary, larceny-theft, motor vehicle theft, and arson. The object of the theft-type offenses is the taking of money or property, but there is no
force or threat of force against the victims.

Real dollars—Analogous to constant dollars, it reflects the nominal dollar that has been adjusted to remove, for example, the effect of inflation over a period of time.

Real Growth—Represents growth in real or constant dollars.

Recession—In general usage, the word recession connotes a marked slippage in economic activity. The National Bureau of Economic Research (NBER) is charged with officially marking the beginning and ending of a recession. The NBER recession is a monthly concept that takes account of a number of monthly indicators—such as employment, personal income, and industrial production—as well as quarterly GDP growth.

Return on Investment (ROI)—ROI measures the amount the return on an investment relative to the cost of the investment.

Rural—The 2013 Rural-Urban Continuum Codes form a classification scheme that distinguishes metropolitan counties by the population size of their metro area, and nonmetropolitan counties by degree of urbanization and adjacency to a metro area. The official Office of Management and Budget (OMB) metro and nonmetro categories have been subdivided into three metro and six nonmetro categories. Each county in the U.S. is assigned one of the 9 codes.

Social Capital—The networks of relationships among people who live and work in a particular society, enabling that society to function effectively.

South Central Kentucky—Counties in Kentucky located in the Area Development Districts (ADDs) to the south of the Bluegrass District (greater Fayette County), including Adair, Allen, Barren, Breckinridge, Butler, Casey, Clinton, Cumberland, Edmonson, Grayson, Green, Hardin, Hart, Larue, Logan, Marion, McCracken, Meade, Metcalfe, Monroe, Nelson, Pulaski, Russell, Simpson, Taylor, Warren, Washington, and Wayne Counties.

Structurally Deficient (SD) (Bridges)—A bridge that is characterized by deteriorated conditions of significant bridge elements and potentially reduced load-carrying capacity. See “2010 Status of the Nation’s Highways, Bridges, and Transit: Conditions and Performance.”

Urban (syn Metropolitan)—The 2013 Rural-Urban Continuum Codes form a classification scheme that distinguishes metropolitan counties by the population size of their metro area, and nonmetropolitan counties by degree of urbanization and adjacency to a metro area. The official Office of Management and Budget (OMB) metro and nonmetro categories have been subdivided into three metro and six nonmetro categories. Each county in the U.S. is assigned one of the 9 codes.

Urban Triangle—Counties in Kentucky located in the Area Development Districts (ADDs) encompassing Louisville, Lexington, and the Cincinnati area of Northern Kentucky, including Anderson, Boone, Bourbon, Boyle, Bullitt, Campbell, Carroll, Clark, Estill, Fayette, Franklin, Gallatin, Garrard, Grant, Harrison, Henry, Jefferson, Jessamine, Kenton, Lincoln, Madison, Mercer, Nicholas, Oldham, Owen, Pendleton, Powell, Scott, Shelby, Spencer, Trimble, and Woodford Counties.

Value Added—The gross output of an industry or a sector less its intermediate inputs;
the contribution of an industry or sector to gross domestic product (GDP). Value added by industry can also be measured as the sum of compensation of employees, taxes on production and imports less subsidies, and gross operating surplus.

Venture Capital Investments—Capital invested in a project in which there is a substantial element of risk, typically a new or expanding business.

Violent Crimes—In the FBI’s Uniform Crime Reporting (UCR) Program, violent crime is composed of four offenses: murder and nonnegligent manslaughter, rape, robbery, and aggravated assault. Violent crimes are defined in the UCR Program as those offenses which involve force or threat of force.

Western Kentucky—Counties in Kentucky located in the western most Area Development Districts (ADDs), including Ballard, Caldwell, Calloway, Carlisle, Christian, Crittenden, Daviess, Fulton, Graves, Hancock, Henderson, Hickman, Hopkins, Livingston, Lyon, Marshall, McCracken, McLean, Muhlenberg, Ohio, Todd, Trigg, Union, and Webster Counties.
NOTES